Gatis Melkus, Andrejs Sizovs, Peteris Rucevskis, Sandra Silina
{"title":"Hi-C 染色质相互作用网络中小群内的转录枢纽","authors":"Gatis Melkus, Andrejs Sizovs, Peteris Rucevskis, Sandra Silina","doi":"10.1089/cmb.2024.0515","DOIUrl":null,"url":null,"abstract":"<p><p>\n <b>Chromatin conformation capture technologies permit the study of chromatin spatial organization on a genome-wide scale at a variety of resolutions. Despite the increasing precision and resolution of high-throughput chromatin conformation capture (Hi-C) methods, it remains challenging to conclusively link transcriptional activity to spatial organizational phenomena. We have developed a clique-based approach for analyzing Hi-C data that helps identify chromosomal hotspots that feature considerable enrichment of chromatin annotations for transcriptional start sites and, building on previously published work, show that these chromosomal hotspots are not only significantly enriched in RNA polymerase II binding sites as identified by the ENCODE project, but also identify a noticeable increase in FANTOM5 and GTEx transcription within our identified cliques across a variety of tissue types. From the obtained data, we surmise that our cliques are a suitable method for identifying transcription factories in Hi-C data, and outline further extensions to the method that may make it useful for locating regions of increased transcriptional activity in datasets where in-depth expression or polymerase data may not be available.</b>\n </p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"589-596"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptional Hubs Within Cliques in Ensemble Hi-C Chromatin Interaction Networks.\",\"authors\":\"Gatis Melkus, Andrejs Sizovs, Peteris Rucevskis, Sandra Silina\",\"doi\":\"10.1089/cmb.2024.0515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>\\n <b>Chromatin conformation capture technologies permit the study of chromatin spatial organization on a genome-wide scale at a variety of resolutions. Despite the increasing precision and resolution of high-throughput chromatin conformation capture (Hi-C) methods, it remains challenging to conclusively link transcriptional activity to spatial organizational phenomena. We have developed a clique-based approach for analyzing Hi-C data that helps identify chromosomal hotspots that feature considerable enrichment of chromatin annotations for transcriptional start sites and, building on previously published work, show that these chromosomal hotspots are not only significantly enriched in RNA polymerase II binding sites as identified by the ENCODE project, but also identify a noticeable increase in FANTOM5 and GTEx transcription within our identified cliques across a variety of tissue types. From the obtained data, we surmise that our cliques are a suitable method for identifying transcription factories in Hi-C data, and outline further extensions to the method that may make it useful for locating regions of increased transcriptional activity in datasets where in-depth expression or polymerase data may not be available.</b>\\n </p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"589-596\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0515\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0515","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/20 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Transcriptional Hubs Within Cliques in Ensemble Hi-C Chromatin Interaction Networks.
Chromatin conformation capture technologies permit the study of chromatin spatial organization on a genome-wide scale at a variety of resolutions. Despite the increasing precision and resolution of high-throughput chromatin conformation capture (Hi-C) methods, it remains challenging to conclusively link transcriptional activity to spatial organizational phenomena. We have developed a clique-based approach for analyzing Hi-C data that helps identify chromosomal hotspots that feature considerable enrichment of chromatin annotations for transcriptional start sites and, building on previously published work, show that these chromosomal hotspots are not only significantly enriched in RNA polymerase II binding sites as identified by the ENCODE project, but also identify a noticeable increase in FANTOM5 and GTEx transcription within our identified cliques across a variety of tissue types. From the obtained data, we surmise that our cliques are a suitable method for identifying transcription factories in Hi-C data, and outline further extensions to the method that may make it useful for locating regions of increased transcriptional activity in datasets where in-depth expression or polymerase data may not be available.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases