Denis Falcetta, Sandrine Quirim, Ilaria Cocchiararo, Florent Chabry, Marine Théodore, Adeline Stiefvater, Shuo Lin, Lionel Tintignac, Robert Ivanek, Jochen Kinter, Markus A Rüegg, Michael Sinnreich, Perrine Castets
{"title":"CaMKIIβ失调导致肌营养不良症 I 型神经肌肉接头失稳","authors":"Denis Falcetta, Sandrine Quirim, Ilaria Cocchiararo, Florent Chabry, Marine Théodore, Adeline Stiefvater, Shuo Lin, Lionel Tintignac, Robert Ivanek, Jochen Kinter, Markus A Rüegg, Michael Sinnreich, Perrine Castets","doi":"10.1186/s13395-024-00345-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown.</p><p><strong>Methods: </strong>We compared changes in NMJs and activity-dependent signalling pathways in HSA<sup>LR</sup> and Mbnl1<sup>ΔE3/ΔE3</sup> mice, two established mouse models of DM1.</p><p><strong>Results: </strong>Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1<sup>ΔE3/ΔE3</sup> muscle, but it did not restore denervation-induced synaptic gene up-regulation.</p><p><strong>Conclusions: </strong>Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"14 1","pages":"11"},"PeriodicalIF":5.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106974/pdf/","citationCount":"0","resultStr":"{\"title\":\"CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I.\",\"authors\":\"Denis Falcetta, Sandrine Quirim, Ilaria Cocchiararo, Florent Chabry, Marine Théodore, Adeline Stiefvater, Shuo Lin, Lionel Tintignac, Robert Ivanek, Jochen Kinter, Markus A Rüegg, Michael Sinnreich, Perrine Castets\",\"doi\":\"10.1186/s13395-024-00345-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown.</p><p><strong>Methods: </strong>We compared changes in NMJs and activity-dependent signalling pathways in HSA<sup>LR</sup> and Mbnl1<sup>ΔE3/ΔE3</sup> mice, two established mouse models of DM1.</p><p><strong>Results: </strong>Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1<sup>ΔE3/ΔE3</sup> muscle, but it did not restore denervation-induced synaptic gene up-regulation.</p><p><strong>Conclusions: </strong>Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.</p>\",\"PeriodicalId\":21747,\"journal\":{\"name\":\"Skeletal Muscle\",\"volume\":\"14 1\",\"pages\":\"11\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11106974/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Skeletal Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13395-024-00345-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-024-00345-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CaMKIIβ deregulation contributes to neuromuscular junction destabilization in Myotonic Dystrophy type I.
Background: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown.
Methods: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1.
Results: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIβ/βM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation.
Conclusions: Our results indicate that CaMKIIβ-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.