研究单一断裂对地下水井回填热交换器性能的影响

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2024-05-21 DOI:10.1016/j.geothermics.2024.103056
Bo Zhang, Wenxuan Zhang, Rui Zhan, Lang Liu, Chao Huan, Yujiao Zhao, Xiaoyan Zhang
{"title":"研究单一断裂对地下水井回填热交换器性能的影响","authors":"Bo Zhang,&nbsp;Wenxuan Zhang,&nbsp;Rui Zhan,&nbsp;Lang Liu,&nbsp;Chao Huan,&nbsp;Yujiao Zhao,&nbsp;Xiaoyan Zhang","doi":"10.1016/j.geothermics.2024.103056","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal hazards in deep mines can be mined synergistically with the deposit as associated geothermal energy resources. Backfill heat exchangers (BFHEs) as a combination of mine backfilling and ground heat exchanger technology are one of the effective methods to realize ore deposit-geothermal energy synergy mining. However, in the complex environment of deep mines, BFHEs will inevitably suffer from fracture damage during long-term heat storage/release cycle operation, which will affect their working performance. To address this problem, this paper established a scaled-down experimental setup for fractured BFHEs units, and used the experimental data to verify the accuracy of the established three-dimensional transient heat transfer mathematical model of the BFHEs unit. Numerical simulation methods were used to investigate the effects of the position, aperture and fractured depth of a single fracture on the heat extraction performance of the BFHEs unit under fully dry or fully saturated working conditions. Significant differences were found in the effect of different fracture positions on the heat extraction capacity of the BFHEs unit. The extraction of geothermal heat by the BFHEs unit was favored when it was in the middle of two tubes, while the opposite was true for other positions. The effect of fracture on the heat extraction capacity of the BFHEs unit increased linearly with fracture aperture. The effect of the fractured depth was relatively greater in the 1/2–3/4 <em>H</em><sub>b</sub> range. The presence of groundwater significantly reduced the effect of the fracture. The effect of the fracture on the heat extraction capacity of the BFHEs unit was reduced by more than 80 % by changing the operating conditions from fully dry to fully saturated condition. The overall effect of a fracture on the heat extraction capacity of the BFHEs unit was not significant, with a 5 mm wide fracture having an effect of no more than 2.5 %, even under the fully dry condition. However, there was a combined effect of multiple fractures, and for a deposit size of 900 × 7 × 80 m, ten 2 mm apertures fractures would results in a maximum reduction of geothermal extraction from BFHEs by 8527 GJ in 10 years, which was equivalent to the heat load of a 13,753 m<sup>2</sup> building for one winter in the cold climate of China.</p></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influence of a single fracture on the performance of backfill heat exchangers in underground stopes\",\"authors\":\"Bo Zhang,&nbsp;Wenxuan Zhang,&nbsp;Rui Zhan,&nbsp;Lang Liu,&nbsp;Chao Huan,&nbsp;Yujiao Zhao,&nbsp;Xiaoyan Zhang\",\"doi\":\"10.1016/j.geothermics.2024.103056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal hazards in deep mines can be mined synergistically with the deposit as associated geothermal energy resources. Backfill heat exchangers (BFHEs) as a combination of mine backfilling and ground heat exchanger technology are one of the effective methods to realize ore deposit-geothermal energy synergy mining. However, in the complex environment of deep mines, BFHEs will inevitably suffer from fracture damage during long-term heat storage/release cycle operation, which will affect their working performance. To address this problem, this paper established a scaled-down experimental setup for fractured BFHEs units, and used the experimental data to verify the accuracy of the established three-dimensional transient heat transfer mathematical model of the BFHEs unit. Numerical simulation methods were used to investigate the effects of the position, aperture and fractured depth of a single fracture on the heat extraction performance of the BFHEs unit under fully dry or fully saturated working conditions. Significant differences were found in the effect of different fracture positions on the heat extraction capacity of the BFHEs unit. The extraction of geothermal heat by the BFHEs unit was favored when it was in the middle of two tubes, while the opposite was true for other positions. The effect of fracture on the heat extraction capacity of the BFHEs unit increased linearly with fracture aperture. The effect of the fractured depth was relatively greater in the 1/2–3/4 <em>H</em><sub>b</sub> range. The presence of groundwater significantly reduced the effect of the fracture. The effect of the fracture on the heat extraction capacity of the BFHEs unit was reduced by more than 80 % by changing the operating conditions from fully dry to fully saturated condition. The overall effect of a fracture on the heat extraction capacity of the BFHEs unit was not significant, with a 5 mm wide fracture having an effect of no more than 2.5 %, even under the fully dry condition. However, there was a combined effect of multiple fractures, and for a deposit size of 900 × 7 × 80 m, ten 2 mm apertures fractures would results in a maximum reduction of geothermal extraction from BFHEs by 8527 GJ in 10 years, which was equivalent to the heat load of a 13,753 m<sup>2</sup> building for one winter in the cold climate of China.</p></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524001457\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524001457","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

深部矿井中的热害可作为伴生地热能资源与矿床协同开采。回填换热器(BFHE)作为矿山回填与地热换热技术的结合体,是实现矿床与地热能协同开采的有效方法之一。然而,在深部矿井的复杂环境中,地埋热交换器在长期的蓄热/放热循环运行过程中,不可避免地会出现断裂损伤,影响其工作性能。针对这一问题,本文建立了断裂 BFHEs 装置的缩比实验装置,并利用实验数据验证了所建立的 BFHEs 装置三维瞬态传热数学模型的准确性。利用数值模拟方法研究了在完全干燥或完全饱和工况下,单个裂缝的位置、孔径和裂缝深度对 BFHEs 装置萃取热量性能的影响。结果表明,不同断裂位置对 BFHEs 装置汲取热量能力的影响存在显著差异。当 BFHEs 位于两根管子的中间时,BFHEs 设备有利于提取地热,而其他位置则相反。断裂对 BFHEs 单元汲取热量能力的影响随断裂孔径的增加而线性增加。在 1/2-3/4 Hb 范围内,断裂深度的影响相对较大。地下水的存在明显降低了断裂的影响。将工作条件从完全干燥状态改为完全饱和状态后,断裂对 BFHEs 装置汲取热量能力的影响降低了 80% 以上。即使在完全干燥的条件下,断裂对 BFHEs 设备汲取热量能力的总体影响也不大,5 毫米宽的断裂影响不超过 2.5%。然而,多条断裂会产生综合影响,对于 900 × 7 × 80 米的矿床大小,10 条 2 毫米孔径的断裂会导致 10 年内从 BFHEs 提取的地热最多减少 8527 千兆焦耳,这相当于 13 753 平方米的建筑物在中国寒冷气候下一个冬季的热负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the influence of a single fracture on the performance of backfill heat exchangers in underground stopes

Thermal hazards in deep mines can be mined synergistically with the deposit as associated geothermal energy resources. Backfill heat exchangers (BFHEs) as a combination of mine backfilling and ground heat exchanger technology are one of the effective methods to realize ore deposit-geothermal energy synergy mining. However, in the complex environment of deep mines, BFHEs will inevitably suffer from fracture damage during long-term heat storage/release cycle operation, which will affect their working performance. To address this problem, this paper established a scaled-down experimental setup for fractured BFHEs units, and used the experimental data to verify the accuracy of the established three-dimensional transient heat transfer mathematical model of the BFHEs unit. Numerical simulation methods were used to investigate the effects of the position, aperture and fractured depth of a single fracture on the heat extraction performance of the BFHEs unit under fully dry or fully saturated working conditions. Significant differences were found in the effect of different fracture positions on the heat extraction capacity of the BFHEs unit. The extraction of geothermal heat by the BFHEs unit was favored when it was in the middle of two tubes, while the opposite was true for other positions. The effect of fracture on the heat extraction capacity of the BFHEs unit increased linearly with fracture aperture. The effect of the fractured depth was relatively greater in the 1/2–3/4 Hb range. The presence of groundwater significantly reduced the effect of the fracture. The effect of the fracture on the heat extraction capacity of the BFHEs unit was reduced by more than 80 % by changing the operating conditions from fully dry to fully saturated condition. The overall effect of a fracture on the heat extraction capacity of the BFHEs unit was not significant, with a 5 mm wide fracture having an effect of no more than 2.5 %, even under the fully dry condition. However, there was a combined effect of multiple fractures, and for a deposit size of 900 × 7 × 80 m, ten 2 mm apertures fractures would results in a maximum reduction of geothermal extraction from BFHEs by 8527 GJ in 10 years, which was equivalent to the heat load of a 13,753 m2 building for one winter in the cold climate of China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
Numerical investigation of the geometric parameters effect of helical blades installed on horizontal geo heat exchanger A segmented analytical solution heat transfer model of U-tube ground heat exchanger based on finite solid cylindrical heat source method Geothermal distribution and evolution of fault-controlled Linyi geothermal system: Constrained from hydrogeochemical composition and numerical simulation Structural controls on hydrothermal fluid flow in a carbonate geothermal reservoir: Insights from giant carbonate veins in western Germany Experiences as heuristics for geothermal public perception: Testing the correlation between thermal waters recreation and geothermal energy perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1