模拟胃食管反流对婴儿猪口咽进食生理的影响

IF 3.9 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-07-01 Epub Date: 2024-05-21 DOI:10.1152/ajpgi.00027.2024
Chloe E Edmonds, Kaitlyn N Robbins, Elizabeth G Dvorak, Stephen P Howe, Sarah A Sheldon, Christopher J Mayerl, Brianna A Owairu, Brady M Young, Rebecca Z German
{"title":"模拟胃食管反流对婴儿猪口咽进食生理的影响","authors":"Chloe E Edmonds, Kaitlyn N Robbins, Elizabeth G Dvorak, Stephen P Howe, Sarah A Sheldon, Christopher J Mayerl, Brianna A Owairu, Brady M Young, Rebecca Z German","doi":"10.1152/ajpgi.00027.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The neural connectivity among the oral cavity, pharynx, and esophagus is a critical component of infant feeding physiology. Central integration of oral and pharyngeal afferents alters motor outputs to structures that power swallowing, but the potential effects of esophageal afferents on preesophageal feeding physiology are unclear. These effects may explain the prevalence of oropharyngeal dysphagia in infants suffering from gastroesophageal reflux (GER), though the mechanism underlying this relationship remains unknown. Here we use the validated infant pig model to assess the impacts of simulated GER on preesophageal feeding parameters. We used high-speed videofluoroscopy and electromyography to record bottle-feeding before and following the infusion of a capsaicin-containing solution into the lower esophagus. Sucking parameters were minimally affected by capsaicin exposure, such that genioglossus activity was unchanged and tongue kinematics were largely unaffected. Aspects of the pharyngeal swallow were altered with simulated GER, including increased thyrohyoid muscle activity, increased excursions of the hyoid and thyroid per swallow, decreased swallow frequency, and increased bolus sizes. These results suggest that esophageal afferents can elicit changes in pharyngeal swallowing. In addition, decreased swallowing frequency may be the mechanism by which esophageal pathologies induce oropharyngeal dysphagia. Although recent work indicates that oral or pharyngeal capsaicin may improve dysphagia symptoms, the decreased performance following esophageal capsaicin exposure highlights the importance of designing sensory interventions based upon neurophysiology and the mechanisms underlying disordered feeding. This mechanistic approach requires comprehensive data collection across the entirety of the feeding process, which can be achieved using models such as the infant pig.<b>NEW & NOTEWORTHY</b> Simulated gastroesophageal reflux (GER) in an infant pig model resulted in significant changes in pharyngeal swallowing, which suggests that esophageal afferents are centrally integrated to alter motor outputs to the pharynx. In addition, decreased swallow frequency and increased bolus sizes may be underlying mechanisms by which esophageal pathologies induce oropharyngeal dysphagia. The infant pig model used here allows for a mechanistic approach, which can facilitate the design of intervention strategies based on neurophysiology.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G105-G116"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376974/pdf/","citationCount":"0","resultStr":"{\"title\":\"The effects of simulated gastroesophageal reflux on infant pig oropharyngeal feeding physiology.\",\"authors\":\"Chloe E Edmonds, Kaitlyn N Robbins, Elizabeth G Dvorak, Stephen P Howe, Sarah A Sheldon, Christopher J Mayerl, Brianna A Owairu, Brady M Young, Rebecca Z German\",\"doi\":\"10.1152/ajpgi.00027.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neural connectivity among the oral cavity, pharynx, and esophagus is a critical component of infant feeding physiology. Central integration of oral and pharyngeal afferents alters motor outputs to structures that power swallowing, but the potential effects of esophageal afferents on preesophageal feeding physiology are unclear. These effects may explain the prevalence of oropharyngeal dysphagia in infants suffering from gastroesophageal reflux (GER), though the mechanism underlying this relationship remains unknown. Here we use the validated infant pig model to assess the impacts of simulated GER on preesophageal feeding parameters. We used high-speed videofluoroscopy and electromyography to record bottle-feeding before and following the infusion of a capsaicin-containing solution into the lower esophagus. Sucking parameters were minimally affected by capsaicin exposure, such that genioglossus activity was unchanged and tongue kinematics were largely unaffected. Aspects of the pharyngeal swallow were altered with simulated GER, including increased thyrohyoid muscle activity, increased excursions of the hyoid and thyroid per swallow, decreased swallow frequency, and increased bolus sizes. These results suggest that esophageal afferents can elicit changes in pharyngeal swallowing. In addition, decreased swallowing frequency may be the mechanism by which esophageal pathologies induce oropharyngeal dysphagia. Although recent work indicates that oral or pharyngeal capsaicin may improve dysphagia symptoms, the decreased performance following esophageal capsaicin exposure highlights the importance of designing sensory interventions based upon neurophysiology and the mechanisms underlying disordered feeding. This mechanistic approach requires comprehensive data collection across the entirety of the feeding process, which can be achieved using models such as the infant pig.<b>NEW & NOTEWORTHY</b> Simulated gastroesophageal reflux (GER) in an infant pig model resulted in significant changes in pharyngeal swallowing, which suggests that esophageal afferents are centrally integrated to alter motor outputs to the pharynx. In addition, decreased swallow frequency and increased bolus sizes may be underlying mechanisms by which esophageal pathologies induce oropharyngeal dysphagia. The infant pig model used here allows for a mechanistic approach, which can facilitate the design of intervention strategies based on neurophysiology.</p>\",\"PeriodicalId\":7725,\"journal\":{\"name\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"volume\":\" \",\"pages\":\"G105-G116\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11376974/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Gastrointestinal and liver physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpgi.00027.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Gastrointestinal and liver physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpgi.00027.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

口腔、咽部和食道之间的神经连接是婴儿喂养生理的关键组成部分。口腔和咽部传入的中枢整合改变了吞咽结构的运动输出,但食道传入对食道前喂养生理的潜在影响尚不清楚。这些影响可能是患有胃食管反流(GER)的婴儿普遍出现口咽吞咽困难的原因,但这种关系的机制仍不清楚。在这里,我们使用经过验证的婴儿猪模型来评估模拟胃食管反流对食管前喂养参数的影响。我们使用高速视频荧光镜和肌电图记录了向食管下段注入含辣椒素溶液之前和之后的奶瓶喂养情况。吸吮参数受辣椒素暴露的影响很小,例如舌根活动没有变化,舌头运动学基本不受影响。模拟胃食管反流会改变咽部吞咽的各个方面,包括甲状舌骨肌活动增加、舌骨和甲状腺每次吞咽的偏移量增加、吞咽频率降低和咽栓大小增加。这些结果表明,食管传入可引起咽部吞咽的变化。此外,吞咽频率降低可能是食管病变诱发口咽吞咽困难的机制。虽然最近的研究表明口服或咽部辣椒素可改善吞咽困难症状,但暴露于食道辣椒素后吞咽困难症状的减轻凸显了根据神经生理学和进食障碍的基本机制设计感官干预措施的重要性。这种机理研究方法需要对整个进食过程进行全面的数据收集,而这可以通过婴儿猪等模型来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of simulated gastroesophageal reflux on infant pig oropharyngeal feeding physiology.

The neural connectivity among the oral cavity, pharynx, and esophagus is a critical component of infant feeding physiology. Central integration of oral and pharyngeal afferents alters motor outputs to structures that power swallowing, but the potential effects of esophageal afferents on preesophageal feeding physiology are unclear. These effects may explain the prevalence of oropharyngeal dysphagia in infants suffering from gastroesophageal reflux (GER), though the mechanism underlying this relationship remains unknown. Here we use the validated infant pig model to assess the impacts of simulated GER on preesophageal feeding parameters. We used high-speed videofluoroscopy and electromyography to record bottle-feeding before and following the infusion of a capsaicin-containing solution into the lower esophagus. Sucking parameters were minimally affected by capsaicin exposure, such that genioglossus activity was unchanged and tongue kinematics were largely unaffected. Aspects of the pharyngeal swallow were altered with simulated GER, including increased thyrohyoid muscle activity, increased excursions of the hyoid and thyroid per swallow, decreased swallow frequency, and increased bolus sizes. These results suggest that esophageal afferents can elicit changes in pharyngeal swallowing. In addition, decreased swallowing frequency may be the mechanism by which esophageal pathologies induce oropharyngeal dysphagia. Although recent work indicates that oral or pharyngeal capsaicin may improve dysphagia symptoms, the decreased performance following esophageal capsaicin exposure highlights the importance of designing sensory interventions based upon neurophysiology and the mechanisms underlying disordered feeding. This mechanistic approach requires comprehensive data collection across the entirety of the feeding process, which can be achieved using models such as the infant pig.NEW & NOTEWORTHY Simulated gastroesophageal reflux (GER) in an infant pig model resulted in significant changes in pharyngeal swallowing, which suggests that esophageal afferents are centrally integrated to alter motor outputs to the pharynx. In addition, decreased swallow frequency and increased bolus sizes may be underlying mechanisms by which esophageal pathologies induce oropharyngeal dysphagia. The infant pig model used here allows for a mechanistic approach, which can facilitate the design of intervention strategies based on neurophysiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.40
自引率
2.20%
发文量
104
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Gastrointestinal and Liver Physiology publishes original articles pertaining to all aspects of research involving normal or abnormal function of the gastrointestinal tract, hepatobiliary system, and pancreas. Authors are encouraged to submit manuscripts dealing with growth and development, digestion, secretion, absorption, metabolism, and motility relative to these organs, as well as research reports dealing with immune and inflammatory processes and with neural, endocrine, and circulatory control mechanisms that affect these organs.
期刊最新文献
In silico integrative scRNA analysis of human colonic epithelium indicates four tuft cell subtypes. Gut microbiota of patients insusceptible to olanzapine-induced fatty liver disease relieves hepatic steatosis in rats. Deleterious impacts of Western diet on jejunum function and health are reversible. Augmenting anti-inflammatory macrophage function in colitis: a neuroimmune mechanism to drive intestinal wound repair. Local tissue response to a C-X-C motif chemokine ligand 12 therapy for fecal incontinence in a rabbit model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1