Huimin Wang, Ya Liu, Tiantian Wang, Duanchong Liu, Quan Lu
{"title":"armandii 红松对卵菌的病理生理学和转录组反应。","authors":"Huimin Wang, Ya Liu, Tiantian Wang, Duanchong Liu, Quan Lu","doi":"10.1093/treephys/tpae056","DOIUrl":null,"url":null,"abstract":"<p><p>Pinus armandii Franch. is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi Tsai and Li and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pathophysiology and transcriptomic responses of Pinus armandii defenses to ophiostomatoid fungi.\",\"authors\":\"Huimin Wang, Ya Liu, Tiantian Wang, Duanchong Liu, Quan Lu\",\"doi\":\"10.1093/treephys/tpae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pinus armandii Franch. is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi Tsai and Li and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpae056\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpae056","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Pathophysiology and transcriptomic responses of Pinus armandii defenses to ophiostomatoid fungi.
Pinus armandii Franch. is an ecologically and economically important evergreen tree species native to western China. Dendroctonus armandi Tsai and Li and pathogenic ophiostomatoid fungi pose substantial threats to P. armandii. With the interplay between species, the defense mechanisms of P. armandii have evolved to withstand external biotic stressors. However, the interactions between P. armandii and pathogenic ophiostomatoid fungal species/strains remain poorly understood. We aimed to analyze the pathophysiological and molecular changes in P. armandii following artificial inoculation with four ophiostomatoid species (Graphilbum parakesiyea, Leptographium qinlingense, Ophiostoma shennongense and Ophiostoma sp. 1). The study revealed that L. qinlingense produced the longest necrotic lesions, and G. parakesiyea produced the shortest. All strains induced monoterpenoid release, and monoterpene levels of P. armandii were positively correlated with fungal virulence (R2 = 0.93, P < 0.01). Co-inoculation of two dominant highly (L. qinlingense) and weakly virulent (O. shennongense) pathogens reduced the pathogenicity of the highly virulent fungi. Transcriptomic analysis of P. armandii (LQ: L. qinlingense treatments, QS: co-inoculation treatments and OS: O. shennongense treatments) showed that the expression pattern of differentially expressed genes (DEGs) between QS and OS was similar, but different from that of LQ. The DEGs (LQ vs QS) involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were downregulated. Notably, compared with LQ, QS significantly decreased the expression of host defense-related genes. This study provides a valuable theoretical basis for managing infestations of D. armandi and associated ophiostomatoid fungi.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.