通过低温沉积 i-a-Si:H 反外延缓冲层提高高效硅异质结太阳能电池的性能

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-05-21 DOI:10.1016/j.solmat.2024.112952
Chen-Wei Peng , Chenran He , Hongfan Wu , Si Huang , Cao Yu , Xiaodong Su , Shuai Zou
{"title":"通过低温沉积 i-a-Si:H 反外延缓冲层提高高效硅异质结太阳能电池的性能","authors":"Chen-Wei Peng ,&nbsp;Chenran He ,&nbsp;Hongfan Wu ,&nbsp;Si Huang ,&nbsp;Cao Yu ,&nbsp;Xiaodong Su ,&nbsp;Shuai Zou","doi":"10.1016/j.solmat.2024.112952","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, an effective strategy for realizing high-performance silicon heterojunction (SHJ) solar cells involves replacing the existing rear single intrinsic hydrogenated amorphous silicon (i-a-Si:H) layer by depositing a bi-layer i-a-Si:H stack on the rear side using two different deposition chambers and manipulating the deposition temperature to inhibit epitaxial growth at the interface and maintain a good interfacial passivation effect. A low-temperature procedure is implemented to deposit the first anti-epitaxial i-a-Si:H buffer layer (I1 layer) of ∼1.5 nm thickness with a high hydrogen concentration and a low refractive index prior to the second bulk i-a-Si:H layer (I2 layer) of ∼5.5 nm thickness. The effects of the growth temperature and ignition power during deposition on the optical and structural properties of the i-a-Si:H buffer layers are investigated, and the impact of the buffer layers on carrier transport and collection is also evaluated. Utilizing this strategy, a trade-off between guaranteed passivation capability and low contact resistivity results in an improvement of 0.21%<sub>abs</sub> in power conversion efficiency (PCE), which is mainly driven by increases in V<sub>oc</sub> and FF, and a certified PCE of 25.92 %, with a high open circuit voltage (V<sub>oc</sub>) of 749.7 mV, is achieved on a full-area M6-size industry-grade silicon wafer.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the performance of high-efficiency silicon heterojunction solar cells through low-temperature deposition of an i-a-Si:H anti-epitaxial buffer layer\",\"authors\":\"Chen-Wei Peng ,&nbsp;Chenran He ,&nbsp;Hongfan Wu ,&nbsp;Si Huang ,&nbsp;Cao Yu ,&nbsp;Xiaodong Su ,&nbsp;Shuai Zou\",\"doi\":\"10.1016/j.solmat.2024.112952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, an effective strategy for realizing high-performance silicon heterojunction (SHJ) solar cells involves replacing the existing rear single intrinsic hydrogenated amorphous silicon (i-a-Si:H) layer by depositing a bi-layer i-a-Si:H stack on the rear side using two different deposition chambers and manipulating the deposition temperature to inhibit epitaxial growth at the interface and maintain a good interfacial passivation effect. A low-temperature procedure is implemented to deposit the first anti-epitaxial i-a-Si:H buffer layer (I1 layer) of ∼1.5 nm thickness with a high hydrogen concentration and a low refractive index prior to the second bulk i-a-Si:H layer (I2 layer) of ∼5.5 nm thickness. The effects of the growth temperature and ignition power during deposition on the optical and structural properties of the i-a-Si:H buffer layers are investigated, and the impact of the buffer layers on carrier transport and collection is also evaluated. Utilizing this strategy, a trade-off between guaranteed passivation capability and low contact resistivity results in an improvement of 0.21%<sub>abs</sub> in power conversion efficiency (PCE), which is mainly driven by increases in V<sub>oc</sub> and FF, and a certified PCE of 25.92 %, with a high open circuit voltage (V<sub>oc</sub>) of 749.7 mV, is achieved on a full-area M6-size industry-grade silicon wafer.</p></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824002642\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824002642","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,实现高性能硅异质结(SHJ)太阳能电池的有效策略是使用两个不同的沉积室在背面沉积双层 i-a-Si:H叠层,以取代现有的背面单本征氢化非晶硅(i-a-Si:H)层,并通过调节沉积温度来抑制界面上的外延生长并保持良好的界面钝化效果。在沉积厚度为 5.5 nm 的第二层块状 i-a-Si:H 层(I2 层)之前,采用低温程序沉积厚度为 1.5 nm、氢浓度高且折射率低的第一层抗外延 i-a-Si:H 缓冲层(I1 层)。研究了沉积过程中的生长温度和点火功率对 i-a-Si:H 缓冲层的光学和结构特性的影响,还评估了缓冲层对载流子传输和收集的影响。利用这一策略,在保证钝化能力和低接触电阻率之间进行了权衡,结果是功率转换效率(PCE)提高了 0.21%abs,这主要是由 Voc 和 FF 的增加所驱动的,并在全面积 M6 尺寸工业级硅晶片上实现了 25.92 % 的认证 PCE,开路电压(Voc)高达 749.7 mV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the performance of high-efficiency silicon heterojunction solar cells through low-temperature deposition of an i-a-Si:H anti-epitaxial buffer layer

In this work, an effective strategy for realizing high-performance silicon heterojunction (SHJ) solar cells involves replacing the existing rear single intrinsic hydrogenated amorphous silicon (i-a-Si:H) layer by depositing a bi-layer i-a-Si:H stack on the rear side using two different deposition chambers and manipulating the deposition temperature to inhibit epitaxial growth at the interface and maintain a good interfacial passivation effect. A low-temperature procedure is implemented to deposit the first anti-epitaxial i-a-Si:H buffer layer (I1 layer) of ∼1.5 nm thickness with a high hydrogen concentration and a low refractive index prior to the second bulk i-a-Si:H layer (I2 layer) of ∼5.5 nm thickness. The effects of the growth temperature and ignition power during deposition on the optical and structural properties of the i-a-Si:H buffer layers are investigated, and the impact of the buffer layers on carrier transport and collection is also evaluated. Utilizing this strategy, a trade-off between guaranteed passivation capability and low contact resistivity results in an improvement of 0.21%abs in power conversion efficiency (PCE), which is mainly driven by increases in Voc and FF, and a certified PCE of 25.92 %, with a high open circuit voltage (Voc) of 749.7 mV, is achieved on a full-area M6-size industry-grade silicon wafer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction A high effciency (11.06 %) CZTSSe solar cell achieved by combining Ag doping in absorber and BxCd1-xs/caztsse heterojunction annealing Multifunctional daytime radiative cooler resistant to UV aging Generic strategy to prepare PPy-based nanocomposites for efficient and stable interfacial solar desalination with excellent salt-rejecting performance Soiling, cleaning, and abrasion: The results of the 5-year photovoltaic glass coating field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1