稳健运动规划的统计线性化

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Systems & Control Letters Pub Date : 2024-05-22 DOI:10.1016/j.sysconle.2024.105825
Clara Leparoux , Riccardo Bonalli , Bruno Hérissé , Frédéric Jean
{"title":"稳健运动规划的统计线性化","authors":"Clara Leparoux ,&nbsp;Riccardo Bonalli ,&nbsp;Bruno Hérissé ,&nbsp;Frédéric Jean","doi":"10.1016/j.sysconle.2024.105825","DOIUrl":null,"url":null,"abstract":"<div><p>The goal of robust motion planning consists of designing open-loop controls which optimally steer a system to a specific target region while mitigating uncertainties and disturbances which affect the dynamics. Recently, stochastic optimal control has enabled particularly accurate formulations of the problem. Nevertheless, despite interesting progresses, these problem formulations still require expensive numerical computations. In this paper, we start bridging this gap by leveraging statistical linearization. Specifically, through statistical linearization we reformulate the robust motion planning problem as a simpler deterministic optimal control problem subject to additional constraints. We rigorously justify our method by providing estimates of the approximation error, as well as some controllability results for the new constrained deterministic formulation. Finally, we apply our method to the powered descent of a space vehicle, showcasing the consistency and efficiency of our approach through numerical experiments.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"189 ","pages":"Article 105825"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical linearization for robust motion planning\",\"authors\":\"Clara Leparoux ,&nbsp;Riccardo Bonalli ,&nbsp;Bruno Hérissé ,&nbsp;Frédéric Jean\",\"doi\":\"10.1016/j.sysconle.2024.105825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The goal of robust motion planning consists of designing open-loop controls which optimally steer a system to a specific target region while mitigating uncertainties and disturbances which affect the dynamics. Recently, stochastic optimal control has enabled particularly accurate formulations of the problem. Nevertheless, despite interesting progresses, these problem formulations still require expensive numerical computations. In this paper, we start bridging this gap by leveraging statistical linearization. Specifically, through statistical linearization we reformulate the robust motion planning problem as a simpler deterministic optimal control problem subject to additional constraints. We rigorously justify our method by providing estimates of the approximation error, as well as some controllability results for the new constrained deterministic formulation. Finally, we apply our method to the powered descent of a space vehicle, showcasing the consistency and efficiency of our approach through numerical experiments.</p></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"189 \",\"pages\":\"Article 105825\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124001130\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124001130","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

稳健运动规划的目标是设计开环控制,以最佳方式将系统引导至特定目标区域,同时减少影响动态的不确定性和干扰。最近,随机最优控制技术为这一问题提供了特别精确的解决方案。然而,尽管取得了令人感兴趣的进展,这些问题的表述仍然需要昂贵的数值计算。在本文中,我们开始利用统计线性化来弥补这一差距。具体来说,通过统计线性化,我们将鲁棒性运动规划问题重新表述为一个更简单的确定性最优控制问题,并附加了一些约束条件。我们通过提供近似误差的估计值,以及新的受限确定性表述的一些可控性结果,对我们的方法进行了严格论证。最后,我们将我们的方法应用于太空飞行器的动力下降,通过数值实验展示了我们方法的一致性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical linearization for robust motion planning

The goal of robust motion planning consists of designing open-loop controls which optimally steer a system to a specific target region while mitigating uncertainties and disturbances which affect the dynamics. Recently, stochastic optimal control has enabled particularly accurate formulations of the problem. Nevertheless, despite interesting progresses, these problem formulations still require expensive numerical computations. In this paper, we start bridging this gap by leveraging statistical linearization. Specifically, through statistical linearization we reformulate the robust motion planning problem as a simpler deterministic optimal control problem subject to additional constraints. We rigorously justify our method by providing estimates of the approximation error, as well as some controllability results for the new constrained deterministic formulation. Finally, we apply our method to the powered descent of a space vehicle, showcasing the consistency and efficiency of our approach through numerical experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
期刊最新文献
A timestamp-based Nesterov’s accelerated projected gradient method for distributed Nash equilibrium seeking in monotone games From data to reduced-order models via moment matching Smooth adaptive finite-time tracking for uncertain time-varying systems Finite-time annular domain H2/H∞ filtering for mean-field stochastic systems with Wiener and Poisson noises Iteration governor for suboptimal MPC with input constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1