Chun Wang;Chenxin Liu;Hans Herdian;Abanob Shehata;Jill Mayeda;Kazuaki Kunihiro;Hiroyuki Sakai;Atsushi Shirane;Kenichi Okada
{"title":"65 纳米 CMOS 中具有受控 LO 馈入的 D 波段宽带单端中和上转换混频器","authors":"Chun Wang;Chenxin Liu;Hans Herdian;Abanob Shehata;Jill Mayeda;Kazuaki Kunihiro;Hiroyuki Sakai;Atsushi Shirane;Kenichi Okada","doi":"10.1109/LSSC.2024.3393973","DOIUrl":null,"url":null,"abstract":"A D-band wideband passive single-ended upconversion mixer with controlled LO feedthrough in 65-nm CMOS process is presented in this letter. The LO feedthrough was controlled by the varactor and the neutralizing transmission line between the LO and RF ports of the mixer. In measurement, the proposed passive single-ended mixer had a conversion gain of −13.0±1.5 dB with an ultrawide 3-dB bandwidth from 110 to 160 GHz. The LO feedthrough suppression was from −38.9 to −24.4 dB at 135 GHz by changing the varactor bias. The measured OP1dB was −12.5 dBm at center frequency. The chip occupies 0.35 mm2, including pads.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"7 ","pages":"167-170"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A D-Band Wideband Single-Ended Neutralized Upconversion Mixer With Controlled LO Feedthrough in 65-nm CMOS\",\"authors\":\"Chun Wang;Chenxin Liu;Hans Herdian;Abanob Shehata;Jill Mayeda;Kazuaki Kunihiro;Hiroyuki Sakai;Atsushi Shirane;Kenichi Okada\",\"doi\":\"10.1109/LSSC.2024.3393973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A D-band wideband passive single-ended upconversion mixer with controlled LO feedthrough in 65-nm CMOS process is presented in this letter. The LO feedthrough was controlled by the varactor and the neutralizing transmission line between the LO and RF ports of the mixer. In measurement, the proposed passive single-ended mixer had a conversion gain of −13.0±1.5 dB with an ultrawide 3-dB bandwidth from 110 to 160 GHz. The LO feedthrough suppression was from −38.9 to −24.4 dB at 135 GHz by changing the varactor bias. The measured OP1dB was −12.5 dBm at center frequency. The chip occupies 0.35 mm2, including pads.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"7 \",\"pages\":\"167-170\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10509605/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10509605/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
本信介绍了一种采用 65 纳米 CMOS 工艺制造的具有受控 LO 馈通的 D 波段宽带无源单端上转换混频器。LO 馈通由变容二极管和混频器 LO 与 RF 端口之间的中和传输线控制。在测量中,所提出的无源单端混频器的转换增益为 -13.0±1.5 dB,具有 110 至 160 GHz 的超宽 3 dB 带宽。通过改变变容二极管偏置,在 135 GHz 时 LO 馈通抑制从 -38.9 dB 降至 -24.4 dB。在中心频率测量的 OP1dB 为 -12.5 dBm。芯片占地 0.35 平方毫米,包括焊盘。
A D-Band Wideband Single-Ended Neutralized Upconversion Mixer With Controlled LO Feedthrough in 65-nm CMOS
A D-band wideband passive single-ended upconversion mixer with controlled LO feedthrough in 65-nm CMOS process is presented in this letter. The LO feedthrough was controlled by the varactor and the neutralizing transmission line between the LO and RF ports of the mixer. In measurement, the proposed passive single-ended mixer had a conversion gain of −13.0±1.5 dB with an ultrawide 3-dB bandwidth from 110 to 160 GHz. The LO feedthrough suppression was from −38.9 to −24.4 dB at 135 GHz by changing the varactor bias. The measured OP1dB was −12.5 dBm at center frequency. The chip occupies 0.35 mm2, including pads.