复杂分子电子碰撞电离截面研究

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2024-05-21 DOI:10.1002/qua.27422
Zhan-Bin Chen
{"title":"复杂分子电子碰撞电离截面研究","authors":"Zhan-Bin Chen","doi":"10.1002/qua.27422","DOIUrl":null,"url":null,"abstract":"<p>An accurate and computationally efficient determination of the cross sections for electron collision ionization of molecules has various applications, such as plasma physics and atmospheric science. In the case of large molecules, ab initio calculations are often difficult and time-consuming. Here, we develop a feed forward neural network to predict the electron impact ionization cross sections of complex molecules. The training (predicting) set in the method consists of a series of theoretical ionization cross sections for small (large) molecules obtained from the combined model, which integrates the Binary-Encounter-Bethe and Deutsch-Märk models. Several complex systems or targets involving electron collision ionization are evaluated, including molecules such as CH<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_4 $$</annotation>\n </semantics></math>, C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>8</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_8 $$</annotation>\n </semantics></math>, C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>5</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_5 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>8</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_8 $$</annotation>\n </semantics></math>, C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>10</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_{10} $$</annotation>\n </semantics></math>, C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>, C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>O, and C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>O. The root mean square errors of the trained and predicted cross sections by the <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>×</mo>\n <mn>3</mn>\n <mo>×</mo>\n <mn>3</mn>\n <mo>×</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ 2\\times 3\\times 3\\times 1 $$</annotation>\n </semantics></math> neural network (compared to the values from the combined model) are found to be approximately .0086 and .0930 (in 10<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mo>−</mo>\n <mn>20</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{-20} $$</annotation>\n </semantics></math> cm<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^2 $$</annotation>\n </semantics></math>), respectively, (using the C<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_2 $$</annotation>\n </semantics></math>H<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mrow>\n <mn>6</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {}_6 $$</annotation>\n </semantics></math>O molecule as an example), indicating our results are very high accuracy. The excellent agreement between the predicted values and the actual values indicates that the neural network is a practical and powerful tool for determining the electron collision ionization cross sections of complex molecules and can provide valuable insights into the dynamics process. Apart from its fundamental importance, this study has far-reaching implications for gas discharge, low-temperature plasmas, and fusion edge plasmas and so forth.</p>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the cross sections for electron collision ionization of complex molecules\",\"authors\":\"Zhan-Bin Chen\",\"doi\":\"10.1002/qua.27422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An accurate and computationally efficient determination of the cross sections for electron collision ionization of molecules has various applications, such as plasma physics and atmospheric science. In the case of large molecules, ab initio calculations are often difficult and time-consuming. Here, we develop a feed forward neural network to predict the electron impact ionization cross sections of complex molecules. The training (predicting) set in the method consists of a series of theoretical ionization cross sections for small (large) molecules obtained from the combined model, which integrates the Binary-Encounter-Bethe and Deutsch-Märk models. Several complex systems or targets involving electron collision ionization are evaluated, including molecules such as CH<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_4 $$</annotation>\\n </semantics></math>, C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_3 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>8</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_8 $$</annotation>\\n </semantics></math>, C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>5</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_5 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>8</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_8 $$</annotation>\\n </semantics></math>, C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_{10} $$</annotation>\\n </semantics></math>, C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>, C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_2 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>O, and C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>O. The root mean square errors of the trained and predicted cross sections by the <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>×</mo>\\n <mn>3</mn>\\n <mo>×</mo>\\n <mn>3</mn>\\n <mo>×</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ 2\\\\times 3\\\\times 3\\\\times 1 $$</annotation>\\n </semantics></math> neural network (compared to the values from the combined model) are found to be approximately .0086 and .0930 (in 10<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>20</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{-20} $$</annotation>\\n </semantics></math> cm<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^2 $$</annotation>\\n </semantics></math>), respectively, (using the C<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_2 $$</annotation>\\n </semantics></math>H<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow></mrow>\\n <mrow>\\n <mn>6</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {}_6 $$</annotation>\\n </semantics></math>O molecule as an example), indicating our results are very high accuracy. The excellent agreement between the predicted values and the actual values indicates that the neural network is a practical and powerful tool for determining the electron collision ionization cross sections of complex molecules and can provide valuable insights into the dynamics process. Apart from its fundamental importance, this study has far-reaching implications for gas discharge, low-temperature plasmas, and fusion edge plasmas and so forth.</p>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27422\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27422","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项研究除了具有重要的基础意义外,还对气体放电、低温等离子体和聚变边缘等离子体等具有深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the cross sections for electron collision ionization of complex molecules

An accurate and computationally efficient determination of the cross sections for electron collision ionization of molecules has various applications, such as plasma physics and atmospheric science. In the case of large molecules, ab initio calculations are often difficult and time-consuming. Here, we develop a feed forward neural network to predict the electron impact ionization cross sections of complex molecules. The training (predicting) set in the method consists of a series of theoretical ionization cross sections for small (large) molecules obtained from the combined model, which integrates the Binary-Encounter-Bethe and Deutsch-Märk models. Several complex systems or targets involving electron collision ionization are evaluated, including molecules such as CH 4 $$ {}_4 $$ , C 3 $$ {}_3 $$ H 8 $$ {}_8 $$ , C 5 $$ {}_5 $$ H 8 $$ {}_8 $$ , C 6 $$ {}_6 $$ H 10 $$ {}_{10} $$ , C 6 $$ {}_6 $$ , C 2 $$ {}_2 $$ H 6 $$ {}_6 $$ O, and C 6 $$ {}_6 $$ H 6 $$ {}_6 $$ O. The root mean square errors of the trained and predicted cross sections by the 2 × 3 × 3 × 1 $$ 2\times 3\times 3\times 1 $$ neural network (compared to the values from the combined model) are found to be approximately .0086 and .0930 (in 10 20 $$ {}^{-20} $$ cm 2 $$ {}^2 $$ ), respectively, (using the C 2 $$ {}_2 $$ H 6 $$ {}_6 $$ O molecule as an example), indicating our results are very high accuracy. The excellent agreement between the predicted values and the actual values indicates that the neural network is a practical and powerful tool for determining the electron collision ionization cross sections of complex molecules and can provide valuable insights into the dynamics process. Apart from its fundamental importance, this study has far-reaching implications for gas discharge, low-temperature plasmas, and fusion edge plasmas and so forth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Exploring Chlorinated Solvents as Electrolytes for Lithium Metal Batteries: A DFT and MD Study Dihydro-1H-Pyrazoles as Donor Blocks in Donor–Acceptor Chromophores for Electro-Optics: A DFT Study of Hyperpolaizability and Electronic Excitations Evaluating Electronic Properties of Self-Assembled Indium Phosphide Nanomaterials as High-Efficient Solar Cell Generation of Database of Polymer Acceptors and Machine Learning-Assisted Screening of Efficient Candidates DFT Computation, Spectroscopic, Hirshfeld Surface, Docking and Topological Analysis on 2,2,5-Trimethyl-1,3-Dioxane-5-Carboxylic Acid as Potent Anti-Cancer Agent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1