利用逆运动学对环状类药物分子进行精确高效的构象取样。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-05-22 DOI:10.1021/acs.jcim.3c02040
Nikolai V. Krivoshchapov*,  and , Michael G. Medvedev*, 
{"title":"利用逆运动学对环状类药物分子进行精确高效的构象取样。","authors":"Nikolai V. Krivoshchapov*,&nbsp; and ,&nbsp;Michael G. Medvedev*,&nbsp;","doi":"10.1021/acs.jcim.3c02040","DOIUrl":null,"url":null,"abstract":"<p >Identification of all of the influential conformers of biomolecules is a crucial step in many tasks of computational biochemistry. Specifically, molecular docking, a key component of <i>in silico</i> drug development, requires a comprehensive set of conformations for potential candidates in order to generate the optimal ligand–receptor poses and, ultimately, find the best drug candidates. However, the presence of flexible cycles in a molecule complicates the initial search for conformers since exhaustive sampling algorithms <i>via</i> torsional random and systematic searches become very inefficient. The devised inverse-kinematics-based Monte Carlo with refinement (MCR) algorithm identifies independently rotatable dihedral angles in (poly)cyclic molecules and uses them to perform global conformational sampling, outperforming popular alternatives (MacroModel, CREST, and RDKit) in terms of speed and diversity of the resulting conformer ensembles. Moreover, MCR quickly and accurately recovers naturally occurring macrocycle conformations for most of the considered molecules.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate and Efficient Conformer Sampling of Cyclic Drug-Like Molecules with Inverse Kinematics\",\"authors\":\"Nikolai V. Krivoshchapov*,&nbsp; and ,&nbsp;Michael G. Medvedev*,&nbsp;\",\"doi\":\"10.1021/acs.jcim.3c02040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Identification of all of the influential conformers of biomolecules is a crucial step in many tasks of computational biochemistry. Specifically, molecular docking, a key component of <i>in silico</i> drug development, requires a comprehensive set of conformations for potential candidates in order to generate the optimal ligand–receptor poses and, ultimately, find the best drug candidates. However, the presence of flexible cycles in a molecule complicates the initial search for conformers since exhaustive sampling algorithms <i>via</i> torsional random and systematic searches become very inefficient. The devised inverse-kinematics-based Monte Carlo with refinement (MCR) algorithm identifies independently rotatable dihedral angles in (poly)cyclic molecules and uses them to perform global conformational sampling, outperforming popular alternatives (MacroModel, CREST, and RDKit) in terms of speed and diversity of the resulting conformer ensembles. Moreover, MCR quickly and accurately recovers naturally occurring macrocycle conformations for most of the considered molecules.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.3c02040\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.3c02040","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

识别生物大分子所有有影响的构象是计算生物化学许多任务的关键步骤。具体来说,分子对接是硅学药物开发的一个关键组成部分,它需要一组全面的潜在候选构象,以生成配体-受体的最佳姿势,并最终找到最佳候选药物。然而,由于通过扭转随机和系统搜索的穷举采样算法效率极低,分子中存在的柔性循环使构象的初始搜索变得复杂。所设计的基于逆运动学的蒙特卡罗细化(MCR)算法可以识别(多)循环分子中可独立旋转的二面角,并利用它们进行全局构象采样,在速度和所产生构象集合的多样性方面优于常用的替代方法(MacroModel、CREST 和 RDKit)。此外,MCR 还能快速、准确地恢复大多数所考虑分子的天然大循环构象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate and Efficient Conformer Sampling of Cyclic Drug-Like Molecules with Inverse Kinematics

Identification of all of the influential conformers of biomolecules is a crucial step in many tasks of computational biochemistry. Specifically, molecular docking, a key component of in silico drug development, requires a comprehensive set of conformations for potential candidates in order to generate the optimal ligand–receptor poses and, ultimately, find the best drug candidates. However, the presence of flexible cycles in a molecule complicates the initial search for conformers since exhaustive sampling algorithms via torsional random and systematic searches become very inefficient. The devised inverse-kinematics-based Monte Carlo with refinement (MCR) algorithm identifies independently rotatable dihedral angles in (poly)cyclic molecules and uses them to perform global conformational sampling, outperforming popular alternatives (MacroModel, CREST, and RDKit) in terms of speed and diversity of the resulting conformer ensembles. Moreover, MCR quickly and accurately recovers naturally occurring macrocycle conformations for most of the considered molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Riboflavin-Induced DNA Damage and Anticancer Activity in Breast Cancer Cells under Visible Light: A TD-DFT and In Vitro Study. DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression. Enhancing Chemical Reaction Monitoring with a Deep Learning Model for NMR Spectra Image Matching to Target Compounds. CageCavityCalc (C3): A Computational Tool for Calculating and Visualizing Cavities in Molecular Cages AttenGpKa: A Universal Predictor of Solvation Acidity Using Graph Neural Network and Molecular Topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1