从已发表的研究中估算肿瘤动态的新型贝叶斯生成方法。

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY CPT: Pharmacometrics & Systems Pharmacology Pub Date : 2024-05-22 DOI:10.1002/psp4.13163
Arya Pourzanjani, Saurabh Modi, Jamie Connarn, Xinwen Zhang, Vijay Upreti, Chih-Wei Lin, Khamir Mehta
{"title":"从已发表的研究中估算肿瘤动态的新型贝叶斯生成方法。","authors":"Arya Pourzanjani,&nbsp;Saurabh Modi,&nbsp;Jamie Connarn,&nbsp;Xinwen Zhang,&nbsp;Vijay Upreti,&nbsp;Chih-Wei Lin,&nbsp;Khamir Mehta","doi":"10.1002/psp4.13163","DOIUrl":null,"url":null,"abstract":"<p>Tumor growth inhibition (TGI) modeling attempts to describe the time course changes in tumor size for patients undergoing cancer therapy. TGI models present several advantages over traditional exposure–response models that are based explicitly on clinical end points and have become a popular tool in the pharmacometrics community. Unfortunately, the data required to fit TGI models, namely longitudinal tumor measurements, are sparse or often not available in literature or publicly accessible databases. On the contrary, common end points such as progression-free survival (PFS) and objective response rate (ORR) are directly derived from longitudinal tumor measurements and are routinely published. To this end, a Bayesian generative model relating underlying tumor dynamics to summary PFS and ORR data is introduced to learn TGI model parameters using only published summary data. The parameterized model can describe the tumor dynamics, quantify treatment effect, and account for differences in the study population. The utility of this model is shown by applying it to several published studies, and learned parameters are combined to simulate an in silico trial of a novel combination therapy in a novel setting.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13163","citationCount":"0","resultStr":"{\"title\":\"A novel Bayesian generative approach for estimating tumor dynamics from published studies\",\"authors\":\"Arya Pourzanjani,&nbsp;Saurabh Modi,&nbsp;Jamie Connarn,&nbsp;Xinwen Zhang,&nbsp;Vijay Upreti,&nbsp;Chih-Wei Lin,&nbsp;Khamir Mehta\",\"doi\":\"10.1002/psp4.13163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tumor growth inhibition (TGI) modeling attempts to describe the time course changes in tumor size for patients undergoing cancer therapy. TGI models present several advantages over traditional exposure–response models that are based explicitly on clinical end points and have become a popular tool in the pharmacometrics community. Unfortunately, the data required to fit TGI models, namely longitudinal tumor measurements, are sparse or often not available in literature or publicly accessible databases. On the contrary, common end points such as progression-free survival (PFS) and objective response rate (ORR) are directly derived from longitudinal tumor measurements and are routinely published. To this end, a Bayesian generative model relating underlying tumor dynamics to summary PFS and ORR data is introduced to learn TGI model parameters using only published summary data. The parameterized model can describe the tumor dynamics, quantify treatment effect, and account for differences in the study population. The utility of this model is shown by applying it to several published studies, and learned parameters are combined to simulate an in silico trial of a novel combination therapy in a novel setting.</p>\",\"PeriodicalId\":10774,\"journal\":{\"name\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psp4.13163\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CPT: Pharmacometrics & Systems Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13163\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psp4.13163","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤生长抑制(TGI)模型试图描述接受癌症治疗的患者肿瘤大小的时间变化过程。与明确基于临床终点的传统暴露-反应模型相比,TGI 模型具有多项优势,并已成为药物计量学界的热门工具。遗憾的是,拟合 TGI 模型所需的数据,即肿瘤纵向测量数据,在文献或可公开访问的数据库中非常稀少或往往无法获得。相反,无进展生存期(PFS)和客观反应率(ORR)等常见终点则是直接从纵向肿瘤测量数据中得出的,并定期公布。为此,我们引入了一种贝叶斯生成模型,该模型将潜在的肿瘤动态与 PFS 和 ORR 的汇总数据联系起来,仅使用已公布的汇总数据来学习 TGI 模型参数。参数化模型可以描述肿瘤动态、量化治疗效果并考虑研究人群的差异。通过将该模型应用于几项已发表的研究,展示了该模型的实用性,并将学习到的参数结合起来,模拟了一种新型联合疗法在新环境下的硅学试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel Bayesian generative approach for estimating tumor dynamics from published studies

Tumor growth inhibition (TGI) modeling attempts to describe the time course changes in tumor size for patients undergoing cancer therapy. TGI models present several advantages over traditional exposure–response models that are based explicitly on clinical end points and have become a popular tool in the pharmacometrics community. Unfortunately, the data required to fit TGI models, namely longitudinal tumor measurements, are sparse or often not available in literature or publicly accessible databases. On the contrary, common end points such as progression-free survival (PFS) and objective response rate (ORR) are directly derived from longitudinal tumor measurements and are routinely published. To this end, a Bayesian generative model relating underlying tumor dynamics to summary PFS and ORR data is introduced to learn TGI model parameters using only published summary data. The parameterized model can describe the tumor dynamics, quantify treatment effect, and account for differences in the study population. The utility of this model is shown by applying it to several published studies, and learned parameters are combined to simulate an in silico trial of a novel combination therapy in a novel setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
期刊最新文献
A model-informed clinical trial simulation tool with a graphical user interface for Duchenne muscular dystrophy. Physiology-based pharmacokinetic model with relative transcriptomics to evaluate tissue distribution and receptor occupancy of anifrolumab. Interim analysis, a tool to enhance efficiency of pharmacokinetic studies: Pharmacokinetics of rifampicin in lactating mother-infant pairs. PBPK modeling: What is the role of CYP3A4 expression in the gastrointestinal tract to accurately predict first-pass metabolism? Immunostimulatory/Immunodynamic model of mRNA-1273 to guide pediatric vaccine dose selection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1