纵向多模态变换器整合常规电子病历中的成像和潜在临床特征,用于肺结节分类。

Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko
{"title":"纵向多模态变换器整合常规电子病历中的成像和潜在临床特征,用于肺结节分类。","authors":"Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko","doi":"10.1007/978-3-031-43895-0_61","DOIUrl":null,"url":null,"abstract":"<p><p>The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110542/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification.\",\"authors\":\"Thomas Z Li, John M Still, Kaiwen Xu, Ho Hin Lee, Leon Y Cai, Aravind R Krishnan, Riqiang Gao, Mirza S Khan, Sanja Antic, Michael Kammer, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Thomas A Lasko\",\"doi\":\"10.1007/978-3-031-43895-0_61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11110542/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-43895-0_61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-43895-0_61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过结合重复成像和医疗背景(如电子健康记录(EHR)),可大大提高单发肺结节(SPN)诊断预测模型的准确性。然而,成像和诊断代码等临床常规模式在不同时间尺度上可能是异步和不规则采样的,这对纵向多模式学习构成了障碍。在这项工作中,我们提出了一种基于变压器的多模态策略,将重复成像与日常收集的电子病历中的纵向临床特征整合在一起,用于 SPN 分类。我们对潜在的临床特征进行了无监督的反纠缠,并利用时间距离缩放自关注来联合学习临床特征表达和胸部计算机断层扫描(CT)。我们的分类器是在公共数据集中的 2,668 次扫描和 1,149 名受试者的纵向胸部 CT、账单代码、药物和实验室测试上进行预训练的,这些数据来自我们所在机构的电子病历。对 227 名患有高难度 SPN 的受试者进行的评估显示,与纵向多模态基线(0.824 对 0.752 AUC)相比,AUC 有了显著提高,与单一横截面多模态方案(0.809 AUC)和仅纵向成像方案(0.741 AUC)相比,AUC 也有所提高。这项工作表明,利用变换器共同学习纵向成像和非成像表型的新方法具有显著优势。代码见 https://github.com/MASILab/lmsignatures。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Longitudinal Multimodal Transformer Integrating Imaging and Latent Clinical Signatures From Routine EHRs for Pulmonary Nodule Classification.

The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Does Pruning Impact Long-Tailed Multi-label Medical Image Classifiers? An AI-Ready Multiplex Staining Dataset for Reproducible and Accurate Characterization of Tumor Immune Microenvironment. LSOR: Longitudinally-Consistent Self-Organized Representation Learning. An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment. Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1