基于物联网的糖尿病患者远程健康监测区块链-机器学习生态系统

Pranav Ratta , Abdullah , Sparsh Sharma
{"title":"基于物联网的糖尿病患者远程健康监测区块链-机器学习生态系统","authors":"Pranav Ratta ,&nbsp;Abdullah ,&nbsp;Sparsh Sharma","doi":"10.1016/j.health.2024.100338","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes poses a global health challenge, demanding continuous monitoring and expert care for effective management. Conventional monitoring methods lack real-time insights and secure data-sharing capabilities, necessitating innovative solutions that leverage emerging technologies. Existing centralized monitoring systems often entail risks such as data breaches and single points of failure, emphasizing the necessity for a secure, decentralized approach that integrates the Internet of Things (IoT), blockchain, and machine learning for efficient and secure diabetes management. This paper introduces a decentralized, blockchain-based framework for remote diabetes monitoring, IoT sensors, machine learning models, and decentralized applications (DApps). The proposed framework comprises five layers: the IoT Sensor Layer, which collects real-time health data from patients; the Blockchain Layer, leveraging smart contracts on the Ethereum blockchain for secure data sharing and transactions; the machine learning Layer, analyzing patient data to detect diabetes; and the DApps Layer, facilitating interactions between patients, doctors, and hospitals. For intelligent decision-making regarding diabetes based on data collected from different sensors, nine machine learning algorithms, including logistic regression, K-nearest neighbors (KNN), support vector machine (SVM), Decision Tree, Random Forest, AdaBoost, stochastic gradient boosting (SGD), and Naive Bayes, were trained and tested on the PIMA dataset. Based on the performance evaluation parameters such as accuracy, recall, F1-score, and the area under the curve (AUC), it was found that the AdaBoost model achieved the highest predictive accuracy of 92.64%, followed by the Decision Tree with an accuracy of 92.21% in diabetes classification.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100338"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442524000406/pdfft?md5=26777c733c6ff555da29a9a652565068&pid=1-s2.0-S2772442524000406-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A blockchain-machine learning ecosystem for IoT-Based remote health monitoring of diabetic patients\",\"authors\":\"Pranav Ratta ,&nbsp;Abdullah ,&nbsp;Sparsh Sharma\",\"doi\":\"10.1016/j.health.2024.100338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetes poses a global health challenge, demanding continuous monitoring and expert care for effective management. Conventional monitoring methods lack real-time insights and secure data-sharing capabilities, necessitating innovative solutions that leverage emerging technologies. Existing centralized monitoring systems often entail risks such as data breaches and single points of failure, emphasizing the necessity for a secure, decentralized approach that integrates the Internet of Things (IoT), blockchain, and machine learning for efficient and secure diabetes management. This paper introduces a decentralized, blockchain-based framework for remote diabetes monitoring, IoT sensors, machine learning models, and decentralized applications (DApps). The proposed framework comprises five layers: the IoT Sensor Layer, which collects real-time health data from patients; the Blockchain Layer, leveraging smart contracts on the Ethereum blockchain for secure data sharing and transactions; the machine learning Layer, analyzing patient data to detect diabetes; and the DApps Layer, facilitating interactions between patients, doctors, and hospitals. For intelligent decision-making regarding diabetes based on data collected from different sensors, nine machine learning algorithms, including logistic regression, K-nearest neighbors (KNN), support vector machine (SVM), Decision Tree, Random Forest, AdaBoost, stochastic gradient boosting (SGD), and Naive Bayes, were trained and tested on the PIMA dataset. Based on the performance evaluation parameters such as accuracy, recall, F1-score, and the area under the curve (AUC), it was found that the AdaBoost model achieved the highest predictive accuracy of 92.64%, followed by the Decision Tree with an accuracy of 92.21% in diabetes classification.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000406/pdfft?md5=26777c733c6ff555da29a9a652565068&pid=1-s2.0-S2772442524000406-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442524000406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442524000406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一项全球性的健康挑战,需要持续监测和专家护理来进行有效管理。传统的监测方法缺乏实时洞察力和安全的数据共享能力,因此需要利用新兴技术的创新解决方案。现有的集中式监测系统往往存在数据泄露和单点故障等风险,因此有必要采用一种安全、分散的方法,将物联网(IoT)、区块链和机器学习整合在一起,实现高效、安全的糖尿病管理。本文介绍了一种基于区块链的去中心化框架,用于远程糖尿病监测、物联网传感器、机器学习模型和去中心化应用程序(DApps)。拟议的框架由五层组成:物联网传感器层,收集患者的实时健康数据;区块链层,利用以太坊区块链上的智能合约实现安全的数据共享和交易;机器学习层,分析患者数据以检测糖尿病;以及 DApps 层,促进患者、医生和医院之间的互动。为了根据从不同传感器收集到的数据对糖尿病做出智能决策,在 PIMA 数据集上训练和测试了九种机器学习算法,包括逻辑回归、K-近邻(KNN)、支持向量机(SVM)、决策树、随机森林、AdaBoost、随机梯度提升(SGD)和奈夫贝叶斯。根据准确率、召回率、F1-分数和曲线下面积(AUC)等性能评估参数,发现 AdaBoost 模型在糖尿病分类中的预测准确率最高,达到 92.64%,其次是决策树,准确率为 92.21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A blockchain-machine learning ecosystem for IoT-Based remote health monitoring of diabetic patients

Diabetes poses a global health challenge, demanding continuous monitoring and expert care for effective management. Conventional monitoring methods lack real-time insights and secure data-sharing capabilities, necessitating innovative solutions that leverage emerging technologies. Existing centralized monitoring systems often entail risks such as data breaches and single points of failure, emphasizing the necessity for a secure, decentralized approach that integrates the Internet of Things (IoT), blockchain, and machine learning for efficient and secure diabetes management. This paper introduces a decentralized, blockchain-based framework for remote diabetes monitoring, IoT sensors, machine learning models, and decentralized applications (DApps). The proposed framework comprises five layers: the IoT Sensor Layer, which collects real-time health data from patients; the Blockchain Layer, leveraging smart contracts on the Ethereum blockchain for secure data sharing and transactions; the machine learning Layer, analyzing patient data to detect diabetes; and the DApps Layer, facilitating interactions between patients, doctors, and hospitals. For intelligent decision-making regarding diabetes based on data collected from different sensors, nine machine learning algorithms, including logistic regression, K-nearest neighbors (KNN), support vector machine (SVM), Decision Tree, Random Forest, AdaBoost, stochastic gradient boosting (SGD), and Naive Bayes, were trained and tested on the PIMA dataset. Based on the performance evaluation parameters such as accuracy, recall, F1-score, and the area under the curve (AUC), it was found that the AdaBoost model achieved the highest predictive accuracy of 92.64%, followed by the Decision Tree with an accuracy of 92.21% in diabetes classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Healthcare analytics (New York, N.Y.)
Healthcare analytics (New York, N.Y.) Applied Mathematics, Modelling and Simulation, Nursing and Health Professions (General)
CiteScore
4.40
自引率
0.00%
发文量
0
审稿时长
79 days
期刊最新文献
Optimized early fusion of handcrafted and deep learning descriptors for voice pathology detection and classification A deep neural network model with spectral correlation function for electrocardiogram classification and diagnosis of atrial fibrillation An ensemble convolutional neural network model for brain stroke prediction using brain computed tomography images A hierarchical Bayesian approach for identifying socioeconomic factors influencing self-rated health in Japan An electrocardiogram signal classification using a hybrid machine learning and deep learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1