Iago P.F. Nunes , Romário S. de Jesus , Jeovana Amorim Almeida , Wellington L.R. Costa , Marcos Malta , Luiz G.P. Soares , Paulo F. de Almeida , Antônio L.B. Pinheiro
{"title":"利用鼠李糖脂纳米颗粒对 1,9-二甲基亚甲基蓝纳米封装进行评估,以增强对白色念珠菌的光动力疗法技术:体外研究","authors":"Iago P.F. Nunes , Romário S. de Jesus , Jeovana Amorim Almeida , Wellington L.R. Costa , Marcos Malta , Luiz G.P. Soares , Paulo F. de Almeida , Antônio L.B. Pinheiro","doi":"10.1016/j.jphotobiol.2024.112943","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on <em>Candida albicans</em> using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by <em>Pseudomonas aeruginosa</em> to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm<sup>2</sup>. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit <em>Candida albicans</em> (2 log reduction) than conventional applications, with a possible clinical application protocol.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"256 ","pages":"Article 112943"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of 1,9-Dimethyl-Methylene Blue nanoencapsulation using rhamnolipid nanoparticles to potentiate the Photodynamic Therapy technique in Candida albicans: In vitro study\",\"authors\":\"Iago P.F. Nunes , Romário S. de Jesus , Jeovana Amorim Almeida , Wellington L.R. Costa , Marcos Malta , Luiz G.P. Soares , Paulo F. de Almeida , Antônio L.B. Pinheiro\",\"doi\":\"10.1016/j.jphotobiol.2024.112943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on <em>Candida albicans</em> using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by <em>Pseudomonas aeruginosa</em> to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm<sup>2</sup>. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit <em>Candida albicans</em> (2 log reduction) than conventional applications, with a possible clinical application protocol.</p></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"256 \",\"pages\":\"Article 112943\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134424001039\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424001039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Evaluation of 1,9-Dimethyl-Methylene Blue nanoencapsulation using rhamnolipid nanoparticles to potentiate the Photodynamic Therapy technique in Candida albicans: In vitro study
With the rapid development of nanotechnology, various functional nanomaterials have shown exciting potential in biomedical areas such as drug delivery, antitumor, and antibacterial therapy. These nanomaterials improve the stability and selectivity of loaded drugs, reduce drug-induced side effects, realize controlled and targeted drug release, and increase therapeutic efficacy. The increased resistance to antifungal microbicides in medical practice and their side effects stimulate interest in new therapies, such as Photodynamic Therapy (PDT), which do not generate resistance in microorganisms and effectively control the pathology. The present study aimed to evaluate, in vitro, the efficacy of photodynamic therapy on Candida albicans using 1,9-Dimethyl-Methylene Blue (DMMB) as photosensitizer, red LED (λ630), and nanoencapsulation of DMMB (RL-NPs/DMMB) using rhamnolipids produced by Pseudomonas aeruginosa to evaluate if there is better performance of DMMB + RL particles compared to DMMB alone via the characterization of DMMB + RL and colony forming count. The tests were carried out across six experimental groups (Control, DMMB, RL-NPs, RL-NPs/DMMB, PDT and PDT + RL-NPs/DMMB) using in the groups with nanoparticles, DMMB (750 ng/mL) encapsulated with rhamnolipids in a 1:1 ratio, the light source consisted of a prototype built with a set of red LEDs with an energy density of 20 J/cm2. The results showed that applying PDT combined with encapsulation (RL-NPs/DMMB) was a more practical approach to inhibit Candida albicans (2 log reduction) than conventional applications, with a possible clinical application protocol.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.