Jichen Zhou, Jantienne Baartman, Yinan Ning, João Pedro Nunes, Hedwig van Delden, Roel Vanhout, Xinping Chen, Coen Ritsema, Lihua Ma, Xuejun Liu
{"title":"利用长江流域作物详图和 PESERA 模型量化地上生物量、土壤有机碳和水土流失情况","authors":"Jichen Zhou, Jantienne Baartman, Yinan Ning, João Pedro Nunes, Hedwig van Delden, Roel Vanhout, Xinping Chen, Coen Ritsema, Lihua Ma, Xuejun Liu","doi":"10.1111/ejss.13503","DOIUrl":null,"url":null,"abstract":"<p>Soil erosion represents a primary threat to soil systems with adverse implications for ecosystem services, crop production, potable water and carbon storage. While numerous studies have quantified the spatial distribution of aboveground Biomass (AGB), soil erosion and soil organic carbon (SOC) in the Yangtze River Basin (YRB), limited attention has been given to assessing the contributions of different land use types and especially crop types to AGB, soil erosion and SOC. In most studies, cropland is taken as a land use class, while detailed crop types and rotation patterns, and their effect on soil erosion and SOC, vary significantly. In this study, we used the Metronamica model to generate a detailed crop rotation and distribution map across the YRB and subsequently employed the Pan-European Soil Erosion Risk Assessment (PESERA) model to simulate the spatial distribution of AGB, soil erosion and SOC on a monthly basis. PESERA model simulations indicate an average soil erosion rate across the entire YRB of 7.7 ton/ha/yr, with erosion hotspots concentrated in the Sichuan Basin and the central-southern regions. The southwestern region and western Sichuan show elevated levels of AGB and SOC, while the eastern plains display lower levels. Erosion rates are lowest in areas designated as artificial land, pasture and grassland, whereas croplands and fruit tree plantations experience the highest erosion rates. In terms of crop types, the highest erosion rates and lowest AGB are observed under fallow and potato cultivation, while the lowest erosion rates and highest AGB are found in rice-wheat rotation fields. To the best of our knowledge, this is the first study taking detailed crop types and patterns into account while evaluating their effect at a relatively large scale (i.e., YRB). These findings can help to develop sustainable soil management and (cropping) conservation strategies.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"75 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying aboveground biomass, soil organic carbon and erosion with a detailed crop map and PESERA model in the Yangtze River Basin\",\"authors\":\"Jichen Zhou, Jantienne Baartman, Yinan Ning, João Pedro Nunes, Hedwig van Delden, Roel Vanhout, Xinping Chen, Coen Ritsema, Lihua Ma, Xuejun Liu\",\"doi\":\"10.1111/ejss.13503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil erosion represents a primary threat to soil systems with adverse implications for ecosystem services, crop production, potable water and carbon storage. While numerous studies have quantified the spatial distribution of aboveground Biomass (AGB), soil erosion and soil organic carbon (SOC) in the Yangtze River Basin (YRB), limited attention has been given to assessing the contributions of different land use types and especially crop types to AGB, soil erosion and SOC. In most studies, cropland is taken as a land use class, while detailed crop types and rotation patterns, and their effect on soil erosion and SOC, vary significantly. In this study, we used the Metronamica model to generate a detailed crop rotation and distribution map across the YRB and subsequently employed the Pan-European Soil Erosion Risk Assessment (PESERA) model to simulate the spatial distribution of AGB, soil erosion and SOC on a monthly basis. PESERA model simulations indicate an average soil erosion rate across the entire YRB of 7.7 ton/ha/yr, with erosion hotspots concentrated in the Sichuan Basin and the central-southern regions. The southwestern region and western Sichuan show elevated levels of AGB and SOC, while the eastern plains display lower levels. Erosion rates are lowest in areas designated as artificial land, pasture and grassland, whereas croplands and fruit tree plantations experience the highest erosion rates. In terms of crop types, the highest erosion rates and lowest AGB are observed under fallow and potato cultivation, while the lowest erosion rates and highest AGB are found in rice-wheat rotation fields. To the best of our knowledge, this is the first study taking detailed crop types and patterns into account while evaluating their effect at a relatively large scale (i.e., YRB). These findings can help to develop sustainable soil management and (cropping) conservation strategies.</p>\",\"PeriodicalId\":12043,\"journal\":{\"name\":\"European Journal of Soil Science\",\"volume\":\"75 3\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Soil Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ejss.13503\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.13503","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Quantifying aboveground biomass, soil organic carbon and erosion with a detailed crop map and PESERA model in the Yangtze River Basin
Soil erosion represents a primary threat to soil systems with adverse implications for ecosystem services, crop production, potable water and carbon storage. While numerous studies have quantified the spatial distribution of aboveground Biomass (AGB), soil erosion and soil organic carbon (SOC) in the Yangtze River Basin (YRB), limited attention has been given to assessing the contributions of different land use types and especially crop types to AGB, soil erosion and SOC. In most studies, cropland is taken as a land use class, while detailed crop types and rotation patterns, and their effect on soil erosion and SOC, vary significantly. In this study, we used the Metronamica model to generate a detailed crop rotation and distribution map across the YRB and subsequently employed the Pan-European Soil Erosion Risk Assessment (PESERA) model to simulate the spatial distribution of AGB, soil erosion and SOC on a monthly basis. PESERA model simulations indicate an average soil erosion rate across the entire YRB of 7.7 ton/ha/yr, with erosion hotspots concentrated in the Sichuan Basin and the central-southern regions. The southwestern region and western Sichuan show elevated levels of AGB and SOC, while the eastern plains display lower levels. Erosion rates are lowest in areas designated as artificial land, pasture and grassland, whereas croplands and fruit tree plantations experience the highest erosion rates. In terms of crop types, the highest erosion rates and lowest AGB are observed under fallow and potato cultivation, while the lowest erosion rates and highest AGB are found in rice-wheat rotation fields. To the best of our knowledge, this is the first study taking detailed crop types and patterns into account while evaluating their effect at a relatively large scale (i.e., YRB). These findings can help to develop sustainable soil management and (cropping) conservation strategies.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.