独立于硬件的深度信号处理:超声心动图可行性研究

Erlend Løland Gundersen;Erik Smistad;Tollef Struksnes Jahren;Svein-Erik Måsøy
{"title":"独立于硬件的深度信号处理:超声心动图可行性研究","authors":"Erlend Løland Gundersen;Erik Smistad;Tollef Struksnes Jahren;Svein-Erik Måsøy","doi":"10.1109/TUFFC.2024.3404622","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) models have emerged as alternative methods to conventional ultrasound (US) signal processing, offering the potential to mimic signal processing chains, reduce inference time, and enable the portability of processing chains across hardware. This article proposes a DL model that replicates the fine-tuned BMode signal processing chain of a high-end US system and explores the potential of using it with a different probe and a lower end system. A deep neural network (DNN) was trained in a supervised manner to map raw beamformed in-phase and quadrature component data into processed images. The dataset consisted of 30 000 cardiac image frames acquired using the GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. The signal processing chain includes depth-dependent bandpass filtering, elevation compounding, frequency compounding, and image compression and filtering. The results indicate that a lightweight DL model can accurately replicate the signal processing chain of a commercial scanner for a given application. Evaluation on a 15-patient test dataset of about 3000 image frames gave a structural similarity index measure (SSIM) of 98.56 ± 0.49. Applying the DL model to data from another probe showed equivalent or improved image quality. This indicates that a single DL model may be used for a set of probes on a given system that targets the same application, which could be a cost-effective tuning and implementation strategy for vendors. Furthermore, the DL model enhanced image quality on a Verasonics dataset, suggesting the potential to port features from high-end US systems to lower end counterparts.","PeriodicalId":13322,"journal":{"name":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","volume":"71 11","pages":"1491-1500"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware-Independent Deep Signal Processing: A Feasibility Study in Echocardiography\",\"authors\":\"Erlend Løland Gundersen;Erik Smistad;Tollef Struksnes Jahren;Svein-Erik Måsøy\",\"doi\":\"10.1109/TUFFC.2024.3404622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) models have emerged as alternative methods to conventional ultrasound (US) signal processing, offering the potential to mimic signal processing chains, reduce inference time, and enable the portability of processing chains across hardware. This article proposes a DL model that replicates the fine-tuned BMode signal processing chain of a high-end US system and explores the potential of using it with a different probe and a lower end system. A deep neural network (DNN) was trained in a supervised manner to map raw beamformed in-phase and quadrature component data into processed images. The dataset consisted of 30 000 cardiac image frames acquired using the GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. The signal processing chain includes depth-dependent bandpass filtering, elevation compounding, frequency compounding, and image compression and filtering. The results indicate that a lightweight DL model can accurately replicate the signal processing chain of a commercial scanner for a given application. Evaluation on a 15-patient test dataset of about 3000 image frames gave a structural similarity index measure (SSIM) of 98.56 ± 0.49. Applying the DL model to data from another probe showed equivalent or improved image quality. This indicates that a single DL model may be used for a set of probes on a given system that targets the same application, which could be a cost-effective tuning and implementation strategy for vendors. Furthermore, the DL model enhanced image quality on a Verasonics dataset, suggesting the potential to port features from high-end US systems to lower end counterparts.\",\"PeriodicalId\":13322,\"journal\":{\"name\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"volume\":\"71 11\",\"pages\":\"1491-1500\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on ultrasonics, ferroelectrics, and frequency control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10537209/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on ultrasonics, ferroelectrics, and frequency control","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10537209/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)模型已成为传统超声(US)信号处理的替代方法,具有模仿信号处理链、缩短推理时间和实现跨硬件处理链可移植性的潜力。本文提出了一种 DL 模型,该模型复制了高端 US 系统的微调 BMode 信号处理链,并探索了将其用于不同探头和低端系统的可能性。以监督方式训练深度神经网络,将原始波束成形同相和正交分量数据映射到处理后的图像中。数据集包括使用配备 4Vc-D 矩阵阵列探头的 GE HealthCare Vivid E95 系统采集的 30,000 个心脏图像帧。信号处理链包括深度带通滤波、仰角复合、频率复合以及图像压缩和滤波。结果表明,轻量级 DL 模型可以针对特定应用准确复制商用扫描仪的信号处理链。在一个包含约三千个图像帧的 15 名患者测试数据集上进行的评估得出的结构相似性指数为 98.56 ± 0.49。将 DL 模型应用于另一个探头的数据,显示出同等或更高的图像质量。这表明,单个 DL 模型可用于特定系统上针对相同应用的一组探头,这对供应商来说可能是一种具有成本效益的调整和实施策略。此外,DL 模型还提高了 Verasonics 数据集的图像质量,这表明将高端 US 系统的功能移植到低端系统的可能性很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware-Independent Deep Signal Processing: A Feasibility Study in Echocardiography
Deep learning (DL) models have emerged as alternative methods to conventional ultrasound (US) signal processing, offering the potential to mimic signal processing chains, reduce inference time, and enable the portability of processing chains across hardware. This article proposes a DL model that replicates the fine-tuned BMode signal processing chain of a high-end US system and explores the potential of using it with a different probe and a lower end system. A deep neural network (DNN) was trained in a supervised manner to map raw beamformed in-phase and quadrature component data into processed images. The dataset consisted of 30 000 cardiac image frames acquired using the GE HealthCare Vivid E95 system with the 4Vc-D matrix array probe. The signal processing chain includes depth-dependent bandpass filtering, elevation compounding, frequency compounding, and image compression and filtering. The results indicate that a lightweight DL model can accurately replicate the signal processing chain of a commercial scanner for a given application. Evaluation on a 15-patient test dataset of about 3000 image frames gave a structural similarity index measure (SSIM) of 98.56 ± 0.49. Applying the DL model to data from another probe showed equivalent or improved image quality. This indicates that a single DL model may be used for a set of probes on a given system that targets the same application, which could be a cost-effective tuning and implementation strategy for vendors. Furthermore, the DL model enhanced image quality on a Verasonics dataset, suggesting the potential to port features from high-end US systems to lower end counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
16.70%
发文量
583
审稿时长
4.5 months
期刊介绍: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control includes the theory, technology, materials, and applications relating to: (1) the generation, transmission, and detection of ultrasonic waves and related phenomena; (2) medical ultrasound, including hyperthermia, bioeffects, tissue characterization and imaging; (3) ferroelectric, piezoelectric, and piezomagnetic materials, including crystals, polycrystalline solids, films, polymers, and composites; (4) frequency control, timing and time distribution, including crystal oscillators and other means of classical frequency control, and atomic, molecular and laser frequency control standards. Areas of interest range from fundamental studies to the design and/or applications of devices and systems.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1