{"title":"Janus 激酶依赖的 Bcl-xL 过表达参与了哮喘第 2 组先天性淋巴细胞对类固醇的抵抗。","authors":"Hayato Shimora, Masaya Matsuda, Yukiko Nakayama, Hiroto Maeyama, Ryunosuke Tanioka, Yoshiyuki Tanaka, Kazuyuki Kitatani, Takeshi Nabe","doi":"10.1111/imm.13805","DOIUrl":null,"url":null,"abstract":"<p>The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1–10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1–100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 μg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3–30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.</p>","PeriodicalId":13508,"journal":{"name":"Immunology","volume":"172 4","pages":"653-668"},"PeriodicalIF":4.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Involvement of Janus kinase-dependent Bcl-xL overexpression in steroid resistance of group 2 innate lymphoid cells in asthma\",\"authors\":\"Hayato Shimora, Masaya Matsuda, Yukiko Nakayama, Hiroto Maeyama, Ryunosuke Tanioka, Yoshiyuki Tanaka, Kazuyuki Kitatani, Takeshi Nabe\",\"doi\":\"10.1111/imm.13805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1–10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1–100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 μg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3–30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.</p>\",\"PeriodicalId\":13508,\"journal\":{\"name\":\"Immunology\",\"volume\":\"172 4\",\"pages\":\"653-668\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/imm.13805\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imm.13805","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Involvement of Janus kinase-dependent Bcl-xL overexpression in steroid resistance of group 2 innate lymphoid cells in asthma
The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1–10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1–100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 μg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3–30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.
期刊介绍:
Immunology is one of the longest-established immunology journals and is recognised as one of the leading journals in its field. We have global representation in authors, editors and reviewers.
Immunology publishes papers describing original findings in all areas of cellular and molecular immunology. High-quality original articles describing mechanistic insights into fundamental aspects of the immune system are welcome. Topics of interest to the journal include: immune cell development, cancer immunology, systems immunology/omics and informatics, inflammation, immunometabolism, immunology of infection, microbiota and immunity, mucosal immunology, and neuroimmunology.
The journal also publishes commissioned review articles on subjects of topical interest to immunologists, and commissions in-depth review series: themed sets of review articles which take a 360° view of select topics at the heart of immunological research.