Anagha Inguva Sheth, Mark J Althoff, Hunter Tolison, Krysta Engel, Maria L Amaya, Anna E Krug, Tracy N Young, Mohammad Minhajuddin, Shanshan Pei, Sweta B Patel, Amanda Winters, Regan Miller, Ian T Shelton, Jonathan St-Germain, Tianyi Ling, Courtney L Jones, Brian Raught, Austin E Gillen, Monica Ransom, Sarah Staggs, Clayton A Smith, Daniel A Pollyea, Brett M Stevens, Craig T Jordan
{"title":"通过干扰线粒体钙来靶向急性髓性白血病干细胞","authors":"Anagha Inguva Sheth, Mark J Althoff, Hunter Tolison, Krysta Engel, Maria L Amaya, Anna E Krug, Tracy N Young, Mohammad Minhajuddin, Shanshan Pei, Sweta B Patel, Amanda Winters, Regan Miller, Ian T Shelton, Jonathan St-Germain, Tianyi Ling, Courtney L Jones, Brian Raught, Austin E Gillen, Monica Ransom, Sarah Staggs, Clayton A Smith, Daniel A Pollyea, Brett M Stevens, Craig T Jordan","doi":"10.1158/2159-8290.CD-23-1145","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and nonresponsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate an active metabolic (i.e., OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance. Significance: We identify increased utilization of mitochondrial calcium as a distinct metabolic requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting mitochondrial calcium uptake as a therapeutic strategy.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":"1922-1939"},"PeriodicalIF":29.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452272/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium.\",\"authors\":\"Anagha Inguva Sheth, Mark J Althoff, Hunter Tolison, Krysta Engel, Maria L Amaya, Anna E Krug, Tracy N Young, Mohammad Minhajuddin, Shanshan Pei, Sweta B Patel, Amanda Winters, Regan Miller, Ian T Shelton, Jonathan St-Germain, Tianyi Ling, Courtney L Jones, Brian Raught, Austin E Gillen, Monica Ransom, Sarah Staggs, Clayton A Smith, Daniel A Pollyea, Brett M Stevens, Craig T Jordan\",\"doi\":\"10.1158/2159-8290.CD-23-1145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and nonresponsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate an active metabolic (i.e., OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance. Significance: We identify increased utilization of mitochondrial calcium as a distinct metabolic requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting mitochondrial calcium uptake as a therapeutic strategy.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\" \",\"pages\":\"1922-1939\"},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452272/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-23-1145\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-23-1145","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium.
Acute myeloid leukemia stem cells (LSCs) are uniquely reliant on oxidative phosphorylation (OXPHOS) for survival. Moreover, maintenance of OXPHOS is dependent on BCL-2, creating a therapeutic opportunity to target LSCs using the BCL-2 inhibitor venetoclax. Although venetoclax-based regimens have shown promising clinical activity, the emergence of drug resistance is prevalent. Thus, in the present study, we investigated how mitochondrial properties may influence venetoclax responsiveness. Our data show that utilization of mitochondrial calcium is fundamentally different between drug-responsive and nonresponsive LSCs. By comparison, venetoclax-resistant LSCs demonstrate an active metabolic (i.e., OXPHOS) status with relatively high levels of calcium. Consequently, we tested genetic and pharmacological approaches to target the mitochondrial calcium uniporter. We demonstrate that inhibition of calcium uptake reduces OXPHOS and leads to eradication of venetoclax-resistant LSCs. These findings demonstrate a central role for calcium signaling in LSCs and provide an avenue for clinical management of venetoclax resistance. Significance: We identify increased utilization of mitochondrial calcium as a distinct metabolic requirement of venetoclax-resistant LSCs and demonstrate the potential of targeting mitochondrial calcium uptake as a therapeutic strategy.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.