Peter J. Reiser, Natalya Belevych, Logan Shope, Beatriz Hanaoka
{"title":"甲醇凝胶电泳:在单一凝胶格式上分离人类快慢肌球蛋白轻链 1 和其他肌纤维蛋白同工型。","authors":"Peter J. Reiser, Natalya Belevych, Logan Shope, Beatriz Hanaoka","doi":"10.1002/elps.202400004","DOIUrl":null,"url":null,"abstract":"<p>This report describes a novel sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) resolving gel format that consistently yields the electrophoretic separation of the fast and slow isoforms of human sarcomeric myosin light chain 1 (MLC1). The inclusion of methanol as a constituent of the resolving gel impacted the electrophoretic mobility of proteins across a broad range of molecular masses. There was greater separation of the fast and slow isoforms of human MLC1, as well as separation and high resolution of fast and slow isoforms of the three myosin heavy chain isoforms that are expressed in human skeletal muscle on the same gel format. Furthermore, the same resolving gel format substantially altered the electrophoretic mobility of at least one isoform of tropomyosin in human striated muscle. It is possible that the inclusion of methanol in SDS–PAGE resolving gels could improve the separation of other proteins that are expressed in muscle and in other tissues and cell types.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400004","citationCount":"0","resultStr":"{\"title\":\"Methanol gel electrophoresis: Separation of human fast and slow myosin light chain 1 and other myofibrillar protein isoforms on a single gel format\",\"authors\":\"Peter J. Reiser, Natalya Belevych, Logan Shope, Beatriz Hanaoka\",\"doi\":\"10.1002/elps.202400004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This report describes a novel sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) resolving gel format that consistently yields the electrophoretic separation of the fast and slow isoforms of human sarcomeric myosin light chain 1 (MLC1). The inclusion of methanol as a constituent of the resolving gel impacted the electrophoretic mobility of proteins across a broad range of molecular masses. There was greater separation of the fast and slow isoforms of human MLC1, as well as separation and high resolution of fast and slow isoforms of the three myosin heavy chain isoforms that are expressed in human skeletal muscle on the same gel format. Furthermore, the same resolving gel format substantially altered the electrophoretic mobility of at least one isoform of tropomyosin in human striated muscle. It is possible that the inclusion of methanol in SDS–PAGE resolving gels could improve the separation of other proteins that are expressed in muscle and in other tissues and cell types.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elps.202400004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400004\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400004","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Methanol gel electrophoresis: Separation of human fast and slow myosin light chain 1 and other myofibrillar protein isoforms on a single gel format
This report describes a novel sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) resolving gel format that consistently yields the electrophoretic separation of the fast and slow isoforms of human sarcomeric myosin light chain 1 (MLC1). The inclusion of methanol as a constituent of the resolving gel impacted the electrophoretic mobility of proteins across a broad range of molecular masses. There was greater separation of the fast and slow isoforms of human MLC1, as well as separation and high resolution of fast and slow isoforms of the three myosin heavy chain isoforms that are expressed in human skeletal muscle on the same gel format. Furthermore, the same resolving gel format substantially altered the electrophoretic mobility of at least one isoform of tropomyosin in human striated muscle. It is possible that the inclusion of methanol in SDS–PAGE resolving gels could improve the separation of other proteins that are expressed in muscle and in other tissues and cell types.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.