基于软传感器的可扩展连续机械手的形状重构

Soft robotics Pub Date : 2024-12-01 Epub Date: 2024-05-23 DOI:10.1089/soro.2023.0094
Pengyuan Wang, Yaqing Feng, Zheng Zheng, Zhiguang Xing, Jianwen Zhao
{"title":"基于软传感器的可扩展连续机械手的形状重构","authors":"Pengyuan Wang, Yaqing Feng, Zheng Zheng, Zhiguang Xing, Jianwen Zhao","doi":"10.1089/soro.2023.0094","DOIUrl":null,"url":null,"abstract":"<p><p>Continuum manipulators can improve spatial adaptability and operational flexibility in constrained environments by endowing them with contraction and extension capabilities. There are currently desired requirements to quantify the shape of an extensible continuum manipulator for strengthening its obstacle avoidance capability and end-effector position accuracy. To address these issues, this study proposes a methodology of using silicone rubber strain sensors (SRSS) to estimate the shape of an extensible continuum manipulator. The way is to measure the strain at specific locations on the deformable body of the manipulator, and then reconstruct the shape by integrating the information from all sensors. The slender sensors are fabricated by a rolling process that transforms planar silicone rubber sensors into cylindrical structures. The proprioceptive model relationship between the strain of the sensor and the deformation of the manipulator is established with considering the phenomenon of torsion of the manipulator caused by compression. The physically extensible continuum manipulator equipped with three driving tendons and nine SRSS was designed. Comprehensive evaluations of various motion trajectories indicate that this method can accurately reconstruct the shape of the manipulator, especially under end-effector loads. The experimental results demonstrate that the mean (maximum) absolute position error of the endpoint is 1.61% (3.45%) of the manipulator length.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":"994-1007"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape Reconstruction of Extensible Continuum Manipulator Based on Soft Sensors.\",\"authors\":\"Pengyuan Wang, Yaqing Feng, Zheng Zheng, Zhiguang Xing, Jianwen Zhao\",\"doi\":\"10.1089/soro.2023.0094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuum manipulators can improve spatial adaptability and operational flexibility in constrained environments by endowing them with contraction and extension capabilities. There are currently desired requirements to quantify the shape of an extensible continuum manipulator for strengthening its obstacle avoidance capability and end-effector position accuracy. To address these issues, this study proposes a methodology of using silicone rubber strain sensors (SRSS) to estimate the shape of an extensible continuum manipulator. The way is to measure the strain at specific locations on the deformable body of the manipulator, and then reconstruct the shape by integrating the information from all sensors. The slender sensors are fabricated by a rolling process that transforms planar silicone rubber sensors into cylindrical structures. The proprioceptive model relationship between the strain of the sensor and the deformation of the manipulator is established with considering the phenomenon of torsion of the manipulator caused by compression. The physically extensible continuum manipulator equipped with three driving tendons and nine SRSS was designed. Comprehensive evaluations of various motion trajectories indicate that this method can accurately reconstruct the shape of the manipulator, especially under end-effector loads. The experimental results demonstrate that the mean (maximum) absolute position error of the endpoint is 1.61% (3.45%) of the manipulator length.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"994-1007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2023.0094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2023.0094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过赋予连续机械手收缩和伸展能力,可以提高其在受限环境中的空间适应性和操作灵活性。目前,人们希望量化可伸展连续机械手的形状,以增强其避开障碍物的能力和末端执行器的位置精度。针对这些问题,本研究提出了一种使用硅橡胶应变传感器(SRSS)估算可伸展连续机械手形状的方法。方法是测量机械手可变形体上特定位置的应变,然后综合所有传感器的信息重建形状。细长型传感器是通过将平面硅橡胶传感器转化为圆柱形结构的滚压工艺制造的。传感器的应变与机械手的变形之间的本体感觉模型关系是在考虑了机械手因压缩而产生的扭转现象后建立的。设计了配备三根驱动筋和九个 SRSS 的物理可伸展连续机械手。对各种运动轨迹的综合评估表明,这种方法可以准确地重建机械手的形状,尤其是在末端执行器负载的情况下。实验结果表明,端点的平均(最大)绝对位置误差为机械手长度的 1.61% (3.45%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Shape Reconstruction of Extensible Continuum Manipulator Based on Soft Sensors.

Continuum manipulators can improve spatial adaptability and operational flexibility in constrained environments by endowing them with contraction and extension capabilities. There are currently desired requirements to quantify the shape of an extensible continuum manipulator for strengthening its obstacle avoidance capability and end-effector position accuracy. To address these issues, this study proposes a methodology of using silicone rubber strain sensors (SRSS) to estimate the shape of an extensible continuum manipulator. The way is to measure the strain at specific locations on the deformable body of the manipulator, and then reconstruct the shape by integrating the information from all sensors. The slender sensors are fabricated by a rolling process that transforms planar silicone rubber sensors into cylindrical structures. The proprioceptive model relationship between the strain of the sensor and the deformation of the manipulator is established with considering the phenomenon of torsion of the manipulator caused by compression. The physically extensible continuum manipulator equipped with three driving tendons and nine SRSS was designed. Comprehensive evaluations of various motion trajectories indicate that this method can accurately reconstruct the shape of the manipulator, especially under end-effector loads. The experimental results demonstrate that the mean (maximum) absolute position error of the endpoint is 1.61% (3.45%) of the manipulator length.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft Robotic Heart Formed with a Myocardial Band for Cardiac Functions. ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration. Reprogrammable Flexible Piezoelectric Actuator Arrays with a High Degree of Freedom for Shape Morphing and Locomotion. Small-Scale Soft Terrestrial Robot with Electrically Driven Multi-Modal Locomotion Capability. Soft Robotics in Upper Limb Neurorehabilitation and Assistance: Current Clinical Evidence and Recommendations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1