Valeriia Sliesarenko , Urban Bren , Aleksandra Lobnik
{"title":"基于荧光的多巴胺检测","authors":"Valeriia Sliesarenko , Urban Bren , Aleksandra Lobnik","doi":"10.1016/j.snr.2024.100199","DOIUrl":null,"url":null,"abstract":"<div><p>Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.</p><p>In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λ<sub>ex</sub>/λ<sub>em</sub> = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λ<sub>ex</sub>/λ<sub>em</sub> = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100199"},"PeriodicalIF":6.5000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000158/pdfft?md5=1f2429dcc48f90f8a9afc65d0ad28fe7&pid=1-s2.0-S2666053924000158-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fluorescence based dopamine detection\",\"authors\":\"Valeriia Sliesarenko , Urban Bren , Aleksandra Lobnik\",\"doi\":\"10.1016/j.snr.2024.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.</p><p>In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λ<sub>ex</sub>/λ<sub>em</sub> = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λ<sub>ex</sub>/λ<sub>em</sub> = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000158/pdfft?md5=1f2429dcc48f90f8a9afc65d0ad28fe7&pid=1-s2.0-S2666053924000158-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Dopamine is an important hormone and neurotransmitter, and its levels in human fluids can indicate stress, depression, and various mental disorders. Food products, as well as medications, affect its level in the human body greatly. Therefore, dopamine monitoring is crucial, and necessary for improving the quality of life. The priority is to search for simple and environmentally friendly sensor systems for the in vitro detection of dopamine, enabling mass utilization.
In this study, we explored the use of o-phthalaldehyde (OPA) as an indicator for the detection of dopamine, with fluorescence in the visible range (λex/λem = 390/455 nm), while direct dopamine fluorescence measurement was in the UV range (λex/λem = 280/320 nm). The longer excitation/emission wavelengths of dopamine-OPA complex, as well as lower detection limits, are useful for developing a simple detection method using LEDs. Three types of poloxamers were tested as additives to improve the fluorescence signal from the reaction between dopamine and OPA. Pluronic F127 led to a 16-fold increase in the fluorescence. Utilizing 4% Pluronic F127 with OPA at pH 7 resulted in a linear response within concentration ranges of dopamine (0.5–3 µM), achieving a limit of detection of 0.015 µM. In contrast, a direct detection of dopamine within the same range exhibited a detection limit of 0.13 µM.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.