基于颗粒填料优化的高性能重结晶碳化硅陶瓷膜的制造

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-05-22 DOI:10.1016/j.memsci.2024.122922
Shulin Wang , Hui Xia , Jianxin Mi , Mengyu Wu , Shuai Yang , Rongqi Xu , Xiang Li , Li Zhu , Man Xu , Yingchao Dong
{"title":"基于颗粒填料优化的高性能重结晶碳化硅陶瓷膜的制造","authors":"Shulin Wang ,&nbsp;Hui Xia ,&nbsp;Jianxin Mi ,&nbsp;Mengyu Wu ,&nbsp;Shuai Yang ,&nbsp;Rongqi Xu ,&nbsp;Xiang Li ,&nbsp;Li Zhu ,&nbsp;Man Xu ,&nbsp;Yingchao Dong","doi":"10.1016/j.memsci.2024.122922","DOIUrl":null,"url":null,"abstract":"<div><p>Overcoming the challenges associated with achieving high uniformity and connectivity of pore channels in ceramic membranes, we designed silicon carbide ceramic membrane derived from the recrystallization process based on the Dinger-Funk equation of the closest-packing model with various grain grading. Furthermore, the effects of particle size distribution on the resulting microstructure and pore architecture of the ceramic membrane was also explored. The findings corroborated the critical importance of raw material particle size distribution in controlling pore size distribution and morphology. After sintering at 1900°C, the silicon carbide ceramic membrane, benefiting from ideal particle packing, exhibited a remarkably uniform pore structure. Notably, the most probable pore size constituted over 70 %, while achieving an open porosity of 51.3 % even without the addition of pore-forming agents. The silicon carbide ceramic membrane also demonstrated exceptional hydrophilicity (water contact angle:∼0°), impressive water permeation (1210 L m<sup>−2</sup> h<sup>−1</sup>·bar<sup>−1</sup>), coupled with efficient turbidity removal (∼100 %) in carbon black wastewater treatment applications. Additionally, membrane regeneration proved effective using a dilute NaOH solution backwash, achieving a flux recovery efficiency of 98 %. This strategy had directive significance for designing high-performing silicon carbide ceramic membranes.</p></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of high-performance recrystallized silicon carbide ceramic membrane based on particle packing optimization\",\"authors\":\"Shulin Wang ,&nbsp;Hui Xia ,&nbsp;Jianxin Mi ,&nbsp;Mengyu Wu ,&nbsp;Shuai Yang ,&nbsp;Rongqi Xu ,&nbsp;Xiang Li ,&nbsp;Li Zhu ,&nbsp;Man Xu ,&nbsp;Yingchao Dong\",\"doi\":\"10.1016/j.memsci.2024.122922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Overcoming the challenges associated with achieving high uniformity and connectivity of pore channels in ceramic membranes, we designed silicon carbide ceramic membrane derived from the recrystallization process based on the Dinger-Funk equation of the closest-packing model with various grain grading. Furthermore, the effects of particle size distribution on the resulting microstructure and pore architecture of the ceramic membrane was also explored. The findings corroborated the critical importance of raw material particle size distribution in controlling pore size distribution and morphology. After sintering at 1900°C, the silicon carbide ceramic membrane, benefiting from ideal particle packing, exhibited a remarkably uniform pore structure. Notably, the most probable pore size constituted over 70 %, while achieving an open porosity of 51.3 % even without the addition of pore-forming agents. The silicon carbide ceramic membrane also demonstrated exceptional hydrophilicity (water contact angle:∼0°), impressive water permeation (1210 L m<sup>−2</sup> h<sup>−1</sup>·bar<sup>−1</sup>), coupled with efficient turbidity removal (∼100 %) in carbon black wastewater treatment applications. Additionally, membrane regeneration proved effective using a dilute NaOH solution backwash, achieving a flux recovery efficiency of 98 %. This strategy had directive significance for designing high-performing silicon carbide ceramic membranes.</p></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824005167\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824005167","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了克服在陶瓷膜中实现孔道的高度均匀性和连通性所带来的挑战,我们根据最近堆积模型的 Dinger-Funk 方程,设计了不同晶粒级配的再结晶过程衍生的碳化硅陶瓷膜。此外,我们还探讨了粒度分布对陶瓷膜微观结构和孔隙结构的影响。研究结果证实,原材料的粒度分布对控制孔径分布和形态至关重要。在 1900°C 下烧结后,碳化硅陶瓷膜得益于理想的颗粒堆积,呈现出非常均匀的孔隙结构。值得注意的是,即使不添加孔隙形成剂,最可能的孔隙尺寸也超过了 70%,而开放孔隙率达到了 51.3%。在炭黑废水处理应用中,碳化硅陶瓷膜还表现出卓越的亲水性(水接触角:∼0°)、惊人的透水性(1210 L m-2 h-1 -bar-1)以及高效的除浊度(∼100%)。此外,使用稀 NaOH 溶液反冲洗膜再生被证明是有效的,通量恢复效率达到 98%。这一策略对设计高性能碳化硅陶瓷膜具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of high-performance recrystallized silicon carbide ceramic membrane based on particle packing optimization

Overcoming the challenges associated with achieving high uniformity and connectivity of pore channels in ceramic membranes, we designed silicon carbide ceramic membrane derived from the recrystallization process based on the Dinger-Funk equation of the closest-packing model with various grain grading. Furthermore, the effects of particle size distribution on the resulting microstructure and pore architecture of the ceramic membrane was also explored. The findings corroborated the critical importance of raw material particle size distribution in controlling pore size distribution and morphology. After sintering at 1900°C, the silicon carbide ceramic membrane, benefiting from ideal particle packing, exhibited a remarkably uniform pore structure. Notably, the most probable pore size constituted over 70 %, while achieving an open porosity of 51.3 % even without the addition of pore-forming agents. The silicon carbide ceramic membrane also demonstrated exceptional hydrophilicity (water contact angle:∼0°), impressive water permeation (1210 L m−2 h−1·bar−1), coupled with efficient turbidity removal (∼100 %) in carbon black wastewater treatment applications. Additionally, membrane regeneration proved effective using a dilute NaOH solution backwash, achieving a flux recovery efficiency of 98 %. This strategy had directive significance for designing high-performing silicon carbide ceramic membranes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Electrochemical degradation of small molecule dyes by TiO2-decorated polyacrylonitrile nanofiber membranes with superior properties High-performance polybenzimidazole composite membranes doped with nitrogen-rich porous nanosheets for high-temperature fuel cells An electrospun iron oxychloride/polyacrylonitrile nanofibrous membrane with superhydrophilic and excellent regeneration properties: Achieving superior oil-in-water emulsion separation Enhanced osmotic power generation through anodic electrodeposited MOFs@MXene heterostructured nanochannels Preparation and application of highly oriented MFI zeolite membranes for efficient pervaporation recovery of organic solvents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1