Wenlong Liao;Dechang Yang;Qi Liu;Yixiong Jia;Chenxi Wang;Zhe Yang
{"title":"通过图注意网络实现数据驱动的配电网络无功功率优化","authors":"Wenlong Liao;Dechang Yang;Qi Liu;Yixiong Jia;Chenxi Wang;Zhe Yang","doi":"10.35833/MPCE.2023.000546","DOIUrl":null,"url":null,"abstract":"Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and reduce the inference time burden, this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs (topology and power loads) and reactive power scheduling schemes of distribution networks, from a data-driven perspective. The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix, a customized loss function, and the use of max-pooling layers. Additionally, a rule-based strategy is proposed to adjust infeasible solutions that violate constraints. Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions. Moreover, its online inference time is significantly faster than traditional physical model based methods, particularly for large-scale distribution networks.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 3","pages":"874-885"},"PeriodicalIF":5.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379575","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Reactive Power Optimization of Distribution Networks via Graph Attention Networks\",\"authors\":\"Wenlong Liao;Dechang Yang;Qi Liu;Yixiong Jia;Chenxi Wang;Zhe Yang\",\"doi\":\"10.35833/MPCE.2023.000546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and reduce the inference time burden, this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs (topology and power loads) and reactive power scheduling schemes of distribution networks, from a data-driven perspective. The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix, a customized loss function, and the use of max-pooling layers. Additionally, a rule-based strategy is proposed to adjust infeasible solutions that violate constraints. Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions. Moreover, its online inference time is significantly faster than traditional physical model based methods, particularly for large-scale distribution networks.\",\"PeriodicalId\":51326,\"journal\":{\"name\":\"Journal of Modern Power Systems and Clean Energy\",\"volume\":\"12 3\",\"pages\":\"874-885\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10379575\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Power Systems and Clean Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10379575/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10379575/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Data-Driven Reactive Power Optimization of Distribution Networks via Graph Attention Networks
Reactive power optimization of distribution networks is traditionally addressed by physical model based methods, which often lead to locally optimal solutions and require heavy online inference time consumption. To improve the quality of the solution and reduce the inference time burden, this paper proposes a new graph attention networks based method to directly map the complex nonlinear relationship between graphs (topology and power loads) and reactive power scheduling schemes of distribution networks, from a data-driven perspective. The graph attention network is tailored specifically to this problem and incorporates several innovative features such as a self-loop in the adjacency matrix, a customized loss function, and the use of max-pooling layers. Additionally, a rule-based strategy is proposed to adjust infeasible solutions that violate constraints. Simulation results on multiple distribution networks demonstrate that the proposed method outperforms other machine learning based methods in terms of the solution quality and robustness to varying load conditions. Moreover, its online inference time is significantly faster than traditional physical model based methods, particularly for large-scale distribution networks.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.