氢键 UPy 主题作为聚合物电解质自修复功能的固有局限性†。

Cuc Thu Mai, Harish Gudla, Guiomar Hernández, Kristina Edström and Jonas Mindemark
{"title":"氢键 UPy 主题作为聚合物电解质自修复功能的固有局限性†。","authors":"Cuc Thu Mai, Harish Gudla, Guiomar Hernández, Kristina Edström and Jonas Mindemark","doi":"10.1039/D4LP00017J","DOIUrl":null,"url":null,"abstract":"<p >The development of advanced materials displaying reversible functionalities, such as self-healing is particularly desirable for energy storage devices, since the cycle life of many rechargeable batteries is limited due to the irreversible mechanical damages over the cycling processes. Hydrogen-bonding self-healing polymers functionalized with ureido pyrimidinone (UPy) has received great interest for energy storage applications, particularly for polymer electrolytes. Herein, we design a star-branched poly(ε-caprolactone-<em>co</em>-trimethylene carbonate) end-capped with UPy groups for both reinforced mechanical and desired self-healing properties in the polymer electrolytes. Despite the versatile implementation and strong bonding association, the benefits of hydrogen-bonding UPy functionalities are diminished after the dissolution of LiTFSI salt in the self-healing polymer matrix. Experimental analysis and molecular dynamics simulations were performed to gain insight into the dynamics of the self-healing polymer electrolyte system. FTIR shows a dramatic decrease in the intensities of the hydrogen-bonded C<img>O signals belonging to UPy motifs after adding LiTFSI salt, indicative of a significant reduction in the total number of hydrogen-bonding and more loosened cross-linked polymer network. This is also noticed as a simultaneous deterioration of the mechanical properties. Molecular dynamics simulations reveal that the complex interplay of C<img>O--Li<small><sup>+</sup></small> coordination bonds and hydrogen bonding between TFSI anions and UPy motifs are responsible for the mechanical deterioration of the self-healing polymer electrolytes.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 3","pages":" 374-383"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00017j?page=search","citationCount":"0","resultStr":"{\"title\":\"Inherent limitations of the hydrogen-bonding UPy motif as self-healing functionality for polymer electrolytes†\",\"authors\":\"Cuc Thu Mai, Harish Gudla, Guiomar Hernández, Kristina Edström and Jonas Mindemark\",\"doi\":\"10.1039/D4LP00017J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The development of advanced materials displaying reversible functionalities, such as self-healing is particularly desirable for energy storage devices, since the cycle life of many rechargeable batteries is limited due to the irreversible mechanical damages over the cycling processes. Hydrogen-bonding self-healing polymers functionalized with ureido pyrimidinone (UPy) has received great interest for energy storage applications, particularly for polymer electrolytes. Herein, we design a star-branched poly(ε-caprolactone-<em>co</em>-trimethylene carbonate) end-capped with UPy groups for both reinforced mechanical and desired self-healing properties in the polymer electrolytes. Despite the versatile implementation and strong bonding association, the benefits of hydrogen-bonding UPy functionalities are diminished after the dissolution of LiTFSI salt in the self-healing polymer matrix. Experimental analysis and molecular dynamics simulations were performed to gain insight into the dynamics of the self-healing polymer electrolyte system. FTIR shows a dramatic decrease in the intensities of the hydrogen-bonded C<img>O signals belonging to UPy motifs after adding LiTFSI salt, indicative of a significant reduction in the total number of hydrogen-bonding and more loosened cross-linked polymer network. This is also noticed as a simultaneous deterioration of the mechanical properties. Molecular dynamics simulations reveal that the complex interplay of C<img>O--Li<small><sup>+</sup></small> coordination bonds and hydrogen bonding between TFSI anions and UPy motifs are responsible for the mechanical deterioration of the self-healing polymer electrolytes.</p>\",\"PeriodicalId\":101139,\"journal\":{\"name\":\"RSC Applied Polymers\",\"volume\":\" 3\",\"pages\":\" 374-383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/lp/d4lp00017j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Applied Polymers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00017j\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lp/d4lp00017j","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于许多充电电池的循环寿命因循环过程中不可逆的机械损伤而受到限制,因此开发具有自愈合等可逆功能的先进材料对于储能设备来说尤为重要。脲基嘧啶酮(UPy)官能化的氢键自愈合聚合物在储能应用方面,尤其是聚合物电解质方面,受到了极大的关注。在此,我们设计了一种以 UPy 基团封端的星形支链聚(ε-己内酯-共-三亚甲基碳酸酯),以增强聚合物电解质的机械性能和理想的自愈合性能。尽管 UPy 官能团具有多功能性和强键合作用,但当 LiTFSI 盐溶解在自愈合聚合物基质中时,氢键合 UPy 官能团的优势就会减弱。为了深入了解自愈合聚合物电解质体系的动态,我们进行了实验分析和分子动力学模拟。傅立叶变换红外光谱显示,加入 LiTFSI 盐后,属于 UPy 主题的氢键 CO 信号强度急剧下降,表明氢键总数显著减少,交联聚合物网络更加松散。这同时也导致了机械性能的下降。分子动力学模拟显示,CO--Li+ 配位键和 TFSI 阴离子与 UPy 主题之间的氢键的复杂相互作用是自愈聚合物电解质机械性能下降的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inherent limitations of the hydrogen-bonding UPy motif as self-healing functionality for polymer electrolytes†

The development of advanced materials displaying reversible functionalities, such as self-healing is particularly desirable for energy storage devices, since the cycle life of many rechargeable batteries is limited due to the irreversible mechanical damages over the cycling processes. Hydrogen-bonding self-healing polymers functionalized with ureido pyrimidinone (UPy) has received great interest for energy storage applications, particularly for polymer electrolytes. Herein, we design a star-branched poly(ε-caprolactone-co-trimethylene carbonate) end-capped with UPy groups for both reinforced mechanical and desired self-healing properties in the polymer electrolytes. Despite the versatile implementation and strong bonding association, the benefits of hydrogen-bonding UPy functionalities are diminished after the dissolution of LiTFSI salt in the self-healing polymer matrix. Experimental analysis and molecular dynamics simulations were performed to gain insight into the dynamics of the self-healing polymer electrolyte system. FTIR shows a dramatic decrease in the intensities of the hydrogen-bonded CO signals belonging to UPy motifs after adding LiTFSI salt, indicative of a significant reduction in the total number of hydrogen-bonding and more loosened cross-linked polymer network. This is also noticed as a simultaneous deterioration of the mechanical properties. Molecular dynamics simulations reveal that the complex interplay of CO--Li+ coordination bonds and hydrogen bonding between TFSI anions and UPy motifs are responsible for the mechanical deterioration of the self-healing polymer electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Back cover Impact of aromatic to quinoidal transformation on the degradation kinetics of imine-based semiconducting polymers† Adhesive-less bonding of incompatible thermosetting materials† Polymer-based solid electrolyte interphase for stable lithium metal anodes† An injectable, self-healing, polysaccharide-based antioxidative hydrogel for wound healing†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1