{"title":"分数布朗运动驱动的高维矩阵过程的特征值分布","authors":"Jian Song, Jianfeng Yao, Wangjun Yuan","doi":"10.1142/s2010326324500096","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study high-dimensional behavior of empirical spectral distributions <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> for a class of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo stretchy=\"false\">×</mo><mi>N</mi></math></span><span></span> symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. For Wigner-type matrices, we obtain almost sure relative compactness of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> following the approach in [1]; for Wishart-type matrices, we obtain tightness of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> by tightness criterions provided in Appendix B. The limit of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> as <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>→</mo><mi>∞</mi></math></span><span></span> is also characterized.</p>","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"57 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion\",\"authors\":\"Jian Song, Jianfeng Yao, Wangjun Yuan\",\"doi\":\"10.1142/s2010326324500096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study high-dimensional behavior of empirical spectral distributions <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> for a class of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo stretchy=\\\"false\\\">×</mo><mi>N</mi></math></span><span></span> symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. For Wigner-type matrices, we obtain almost sure relative compactness of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> in <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo>,</mo><mstyle mathvariant=\\\"bold\\\"><mi>P</mi></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> following the approach in [1]; for Wishart-type matrices, we obtain tightness of <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> on <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo>,</mo><mstyle mathvariant=\\\"bold\\\"><mi>P</mi></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> by tightness criterions provided in Appendix B. The limit of <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> as <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo>→</mo><mi>∞</mi></math></span><span></span> is also characterized.</p>\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326324500096\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500096","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion
In this paper, we study high-dimensional behavior of empirical spectral distributions for a class of symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter . For Wigner-type matrices, we obtain almost sure relative compactness of in following the approach in [1]; for Wishart-type matrices, we obtain tightness of on by tightness criterions provided in Appendix B. The limit of as is also characterized.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.