Bohyun Choi , Albert Tafur Rangel , Eduard J. Kerkhoven , Yvonne Nygård
{"title":"对酿酒酵母进行工程改造,以增强其代谢稳健性并利用木质纤维素生物质生产 L-乳酸。","authors":"Bohyun Choi , Albert Tafur Rangel , Eduard J. Kerkhoven , Yvonne Nygård","doi":"10.1016/j.ymben.2024.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting <em>Saccharomyces cerevisiae</em> strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting <em>ERF2</em>, <em>GPD1</em>, and <em>CYB2</em>. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, <em>PHO13</em> and <em>ALD6</em> were also deleted from the strain. Finally, <em>CDC19</em> encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of <em>S. cerevisiae</em> for industrial production of lactic acid from lignocellulosic biomass.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"84 ","pages":"Pages 23-33"},"PeriodicalIF":6.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1096717624000697/pdfft?md5=843ae8f101d942e166b7a1d8f4648a82&pid=1-s2.0-S1096717624000697-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass\",\"authors\":\"Bohyun Choi , Albert Tafur Rangel , Eduard J. Kerkhoven , Yvonne Nygård\",\"doi\":\"10.1016/j.ymben.2024.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting <em>Saccharomyces cerevisiae</em> strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting <em>ERF2</em>, <em>GPD1</em>, and <em>CYB2</em>. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, <em>PHO13</em> and <em>ALD6</em> were also deleted from the strain. Finally, <em>CDC19</em> encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of <em>S. cerevisiae</em> for industrial production of lactic acid from lignocellulosic biomass.</p></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"84 \",\"pages\":\"Pages 23-33\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1096717624000697/pdfft?md5=843ae8f101d942e166b7a1d8f4648a82&pid=1-s2.0-S1096717624000697-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717624000697\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000697","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
要从木质纤维素生物质中实现乳酸的可持续生物制造,就需要进行代谢工程,以提高生产率和稳健性。乳酸是一种重要的商品化学品,可用作生产聚乳酸(一种可生物降解的聚合物)的单体。在这里,我们利用基于模型的合理优化技术,设计出了一种二倍体、发酵木糖的酿酒酵母菌株来生产 L-乳酸。通过引入多个乳酸脱氢酶编码基因,同时删除 ERF2、GPD1 和 CYB2,使代谢通量转向乳酸。以木糖为碳源,乳酸产量达到 93 克/升,产率为 0.84 克/克。为了提高木糖的利用率并减少乙酸的合成,还从菌株中删除了 PHO13 和 ALD6。最后,过量表达了编码丙酮酸激酶的 CDC19,当底物为合成的木质纤维素水解物培养基(含有己糖、戊糖以及乙酸盐和糠醛等抑制剂)时,乳酸产量为 0.75 克/克糖。值得注意的是,建模还为了解氧气对乳酸生产的影响提供了线索。在氧气限制条件下,木糖产生大量乳酸的原因是通过氧化磷酸化途径的通量减少。相反,在合成水解物培养基中,较高的氧气水平有利于乳酸的产生,这可能是因为需要较高浓度的 ATP 来耐受其中的抑制剂。这项工作凸显了 S. cerevisiae 从木质纤维素生物质中工业化生产乳酸的潜力。
Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass
Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.