逆流非阿贝尔流体中的新型不稳定性

Subramanya Bhat K.N. , Amita Das , V. Ravishankar , Bhooshan Paradkar
{"title":"逆流非阿贝尔流体中的新型不稳定性","authors":"Subramanya Bhat K.N. ,&nbsp;Amita Das ,&nbsp;V. Ravishankar ,&nbsp;Bhooshan Paradkar","doi":"10.1016/j.fpp.2024.100056","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamics of strongly interacting particles are governed by Yang–Mills (Y–M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) (Gross and Wilczek, 1973; Politzer, 1973; ’t Hooft, 1972<span>[1]</span>, <span>[2]</span>, <span>[3]</span>) and has been very well studied. Classical Y–M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark–gluon plasma (QGP) — which was prevalent in the early universe and is also produced in relativistic heavy ion collision experiments. This calls for a systematic study of classical Y–M theories. A good insight into classical Y–M dynamics would be best obtained by comparing and contrasting the Y–M results with their ED counterparts. In this article, a beginning has been made by considering streaming instabilities in Y–M fluids. We find that in addition to analogues of ED instabilities, novel nonabelian modes arise, reflecting the inherent nonabelian nature of the interaction. The new modes exhibit propagation/ growth, with growth rates that can be larger than what we find in ED. Interestingly, we also find a mode that propagates without getting affected by the medium.</p></div>","PeriodicalId":100558,"journal":{"name":"Fundamental Plasma Physics","volume":"11 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772828524000219/pdfft?md5=43e6ee4af48becb964c4eb56a6cc21bb&pid=1-s2.0-S2772828524000219-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel instabilities in counter-streaming nonabelian fluids\",\"authors\":\"Subramanya Bhat K.N. ,&nbsp;Amita Das ,&nbsp;V. Ravishankar ,&nbsp;Bhooshan Paradkar\",\"doi\":\"10.1016/j.fpp.2024.100056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamics of strongly interacting particles are governed by Yang–Mills (Y–M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) (Gross and Wilczek, 1973; Politzer, 1973; ’t Hooft, 1972<span>[1]</span>, <span>[2]</span>, <span>[3]</span>) and has been very well studied. Classical Y–M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark–gluon plasma (QGP) — which was prevalent in the early universe and is also produced in relativistic heavy ion collision experiments. This calls for a systematic study of classical Y–M theories. A good insight into classical Y–M dynamics would be best obtained by comparing and contrasting the Y–M results with their ED counterparts. In this article, a beginning has been made by considering streaming instabilities in Y–M fluids. We find that in addition to analogues of ED instabilities, novel nonabelian modes arise, reflecting the inherent nonabelian nature of the interaction. The new modes exhibit propagation/ growth, with growth rates that can be larger than what we find in ED. Interestingly, we also find a mode that propagates without getting affected by the medium.</p></div>\",\"PeriodicalId\":100558,\"journal\":{\"name\":\"Fundamental Plasma Physics\",\"volume\":\"11 \",\"pages\":\"Article 100056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000219/pdfft?md5=43e6ee4af48becb964c4eb56a6cc21bb&pid=1-s2.0-S2772828524000219-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamental Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772828524000219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772828524000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

强相互作用粒子的动力学受杨-米尔斯(Y-M)理论支配,该理论是麦克斯韦电动力学(ED)的自然概括。它的量子化版本被称为量子色动力学(QCD)(Gross and Wilczek, 1973; Politzer, 1973; 't Hooft, 1972[1], [2], [3]),研究得非常深入。事实证明,经典 Y-M 理论同样令人感兴趣,因为它在描述夸克-胶子等离子体(QGP)物理学中发挥着核心作用--夸克-胶子等离子体在早期宇宙中非常普遍,在相对论重离子碰撞实验中也会产生。这就需要对经典 Y-M 理论进行系统研究。对经典 Y-M 动力学的深入了解,最好是将 Y-M 结果与其对应的 ED 结果进行比较和对比。本文首先考虑了 Y-M 流体中的流不稳定性。我们发现,除了类似于 ED 的不稳定性之外,还出现了新的非阿贝尔模式,反映了相互作用固有的非阿贝尔性质。新模式表现出传播/增长,其增长率可能大于我们在 ED 中发现的增长率。有趣的是,我们还发现了一种不受介质影响而传播的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel instabilities in counter-streaming nonabelian fluids

The dynamics of strongly interacting particles are governed by Yang–Mills (Y–M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) (Gross and Wilczek, 1973; Politzer, 1973; ’t Hooft, 1972[1], [2], [3]) and has been very well studied. Classical Y–M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark–gluon plasma (QGP) — which was prevalent in the early universe and is also produced in relativistic heavy ion collision experiments. This calls for a systematic study of classical Y–M theories. A good insight into classical Y–M dynamics would be best obtained by comparing and contrasting the Y–M results with their ED counterparts. In this article, a beginning has been made by considering streaming instabilities in Y–M fluids. We find that in addition to analogues of ED instabilities, novel nonabelian modes arise, reflecting the inherent nonabelian nature of the interaction. The new modes exhibit propagation/ growth, with growth rates that can be larger than what we find in ED. Interestingly, we also find a mode that propagates without getting affected by the medium.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial board Frontiers of plasma physics and technology 2023 Corrigendum regarding missing disclaimer statements in previously published articles Physicochemical properties and antimicrobial efficacy of argon cold atmospheric pressure plasma jet activated liquids – a comparative study Early applications of Neural Networks to plasma science: Architectures, solutions, and impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1