{"title":"机器学习:解决方案与挑战","authors":"Jie Xu;Zihan Wu;Cong Wang;Xiaohua Jia","doi":"10.1109/TETCI.2024.3379240","DOIUrl":null,"url":null,"abstract":"Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 3","pages":"2150-2168"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Unlearning: Solutions and Challenges\",\"authors\":\"Jie Xu;Zihan Wu;Cong Wang;Xiaohua Jia\",\"doi\":\"10.1109/TETCI.2024.3379240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 3\",\"pages\":\"2150-2168\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10488864/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10488864/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Machine learning models may inadvertently memorize sensitive, unauthorized, or malicious data, posing risks of privacy breaches, security vulnerabilities, and performance degradation. To address these issues, machine unlearning has emerged as a critical technique to selectively remove specific training data points' influence on trained models. This paper provides a comprehensive taxonomy and analysis of the solutions in machine unlearning. We categorize existing solutions into exact unlearning approaches that remove data influence thoroughly and approximate unlearning approaches that efficiently minimize data influence. By comprehensively reviewing solutions, we identify and discuss their strengths and limitations. Furthermore, we propose future directions to advance machine unlearning and establish it as an essential capability for trustworthy and adaptive machine learning models. This paper provides researchers with a roadmap of open problems, encouraging impactful contributions to address real-world needs for selective data removal.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.