桉树根部的氮限制:对土壤有机质动员的连带影响

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2024-05-25 DOI:10.1007/s00374-024-01832-x
Luis Carlos Colocho Hurtarte, Ivan Francisco Souza, Rodrigo Teixeira Ávila, Luís Fernando J. Almeida, Gabriela Soares, Leonardus Vergütz, Ivo Ribeiro Silva
{"title":"桉树根部的氮限制:对土壤有机质动员的连带影响","authors":"Luis Carlos Colocho Hurtarte, Ivan Francisco Souza, Rodrigo Teixeira Ávila, Luís Fernando J. Almeida, Gabriela Soares, Leonardus Vergütz, Ivo Ribeiro Silva","doi":"10.1007/s00374-024-01832-x","DOIUrl":null,"url":null,"abstract":"<p>Emerging scientific evidence has shown that root exudates may trigger the mobilization of soil organic matter (SOM), particularly under nutrient limitation. However, the role of changes in root morphology, metabolism, exudation, and their impact on rhizospheric properties and SOM remain poorly known. To address this issue, we conducted a rhizobox experiment for 50 days in which pre-grown eucalypt plants (120 days-old) were supplied with nutrient solutions providing either limited (0.0 mg L<sup>− 1</sup>) or normal N supply (196.0 mg L<sup>− 1</sup>). After 48 days, we used a <sup>13</sup>CO<sub>2</sub> pulse labeling to track the impact of N limitation on C translocation to roots and soil respiration. After the 50th day, we assessed root morphology and metabolism, rhizospheric pH, mineral crystallinity, C and N contents, and the molecular composition of SOM. Under N limitation, eucalypt plants showed reduced photosynthesis, increased their root-to-shoot ratio and root branching, with organic acids prevailing among root metabolites. Overall, N-limited eucalypt plants led to a cascading of changes in the rhizosphere: increased concentrations of recently fixed <sup>13</sup>C-CO<sub>2</sub>, citrate, and N-bearing compounds, whereas soil pH and Fe-bound SOM decreased. These results were not followed by significant changes in microbial biomass, neither fungi: bacteria nor Gram-positive: Gram-negative ratios. Our results show that under N limitation, eucalypt roots exhibited a cascade of morpho-physiological adjustments that ultimately increased the mobilization of some SOM pools. Therefore, the combined impacts of those root morpho-physiological traits on the mobilization of SOM may reduce the overall soil C sink of eucalypt forests under N limitation.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"19 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen limitation in eucalypt roots: a cascading influence on the mobilization of soil organic matter\",\"authors\":\"Luis Carlos Colocho Hurtarte, Ivan Francisco Souza, Rodrigo Teixeira Ávila, Luís Fernando J. Almeida, Gabriela Soares, Leonardus Vergütz, Ivo Ribeiro Silva\",\"doi\":\"10.1007/s00374-024-01832-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emerging scientific evidence has shown that root exudates may trigger the mobilization of soil organic matter (SOM), particularly under nutrient limitation. However, the role of changes in root morphology, metabolism, exudation, and their impact on rhizospheric properties and SOM remain poorly known. To address this issue, we conducted a rhizobox experiment for 50 days in which pre-grown eucalypt plants (120 days-old) were supplied with nutrient solutions providing either limited (0.0 mg L<sup>− 1</sup>) or normal N supply (196.0 mg L<sup>− 1</sup>). After 48 days, we used a <sup>13</sup>CO<sub>2</sub> pulse labeling to track the impact of N limitation on C translocation to roots and soil respiration. After the 50th day, we assessed root morphology and metabolism, rhizospheric pH, mineral crystallinity, C and N contents, and the molecular composition of SOM. Under N limitation, eucalypt plants showed reduced photosynthesis, increased their root-to-shoot ratio and root branching, with organic acids prevailing among root metabolites. Overall, N-limited eucalypt plants led to a cascading of changes in the rhizosphere: increased concentrations of recently fixed <sup>13</sup>C-CO<sub>2</sub>, citrate, and N-bearing compounds, whereas soil pH and Fe-bound SOM decreased. These results were not followed by significant changes in microbial biomass, neither fungi: bacteria nor Gram-positive: Gram-negative ratios. Our results show that under N limitation, eucalypt roots exhibited a cascade of morpho-physiological adjustments that ultimately increased the mobilization of some SOM pools. Therefore, the combined impacts of those root morpho-physiological traits on the mobilization of SOM may reduce the overall soil C sink of eucalypt forests under N limitation.</p>\",\"PeriodicalId\":9210,\"journal\":{\"name\":\"Biology and Fertility of Soils\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology and Fertility of Soils\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s00374-024-01832-x\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01832-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

新的科学证据表明,根系渗出物可能会引发土壤有机质(SOM)的调动,尤其是在养分受限的情况下。然而,人们对根系形态、新陈代谢、渗出的变化及其对根瘤特性和土壤有机质的影响仍知之甚少。为了解决这个问题,我们进行了一项为期 50 天的根瘤菌实验,在该实验中,生长前的桉树植株(120 天)接受营养液供应,营养液提供有限(0.0 毫克/升-1)或正常氮供应(196.0 毫克/升-1)。48 天后,我们使用 13CO2 脉冲标记来跟踪氮限制对根部 C 转化和土壤呼吸的影响。第 50 天后,我们评估了根系形态和新陈代谢、根瘤层 pH 值、矿物结晶度、碳和氮含量以及 SOM 的分子组成。在氮限制条件下,桉树植物的光合作用减弱,根芽比和根系分枝增加,根系代谢产物以有机酸为主。总体而言,氮限制导致桉树根圈发生了一系列变化:最近固定的 13C-CO2、柠檬酸盐和含氮化合物的浓度增加,而土壤 pH 值和与铁结合的 SOM 降低。在这些结果之后,微生物生物量、真菌和细菌以及革兰氏阳性和阴性比例都没有发生重大变化:革兰氏阳性:阴性比率也没有发生明显变化。我们的研究结果表明,在氮限制条件下,桉树根系表现出一连串的形态生理学调整,最终增加了对某些 SOM 池的调动。因此,在氮限制条件下,这些根系形态-生理特征对SOM动员的综合影响可能会减少桉树林的整体土壤碳汇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen limitation in eucalypt roots: a cascading influence on the mobilization of soil organic matter

Emerging scientific evidence has shown that root exudates may trigger the mobilization of soil organic matter (SOM), particularly under nutrient limitation. However, the role of changes in root morphology, metabolism, exudation, and their impact on rhizospheric properties and SOM remain poorly known. To address this issue, we conducted a rhizobox experiment for 50 days in which pre-grown eucalypt plants (120 days-old) were supplied with nutrient solutions providing either limited (0.0 mg L− 1) or normal N supply (196.0 mg L− 1). After 48 days, we used a 13CO2 pulse labeling to track the impact of N limitation on C translocation to roots and soil respiration. After the 50th day, we assessed root morphology and metabolism, rhizospheric pH, mineral crystallinity, C and N contents, and the molecular composition of SOM. Under N limitation, eucalypt plants showed reduced photosynthesis, increased their root-to-shoot ratio and root branching, with organic acids prevailing among root metabolites. Overall, N-limited eucalypt plants led to a cascading of changes in the rhizosphere: increased concentrations of recently fixed 13C-CO2, citrate, and N-bearing compounds, whereas soil pH and Fe-bound SOM decreased. These results were not followed by significant changes in microbial biomass, neither fungi: bacteria nor Gram-positive: Gram-negative ratios. Our results show that under N limitation, eucalypt roots exhibited a cascade of morpho-physiological adjustments that ultimately increased the mobilization of some SOM pools. Therefore, the combined impacts of those root morpho-physiological traits on the mobilization of SOM may reduce the overall soil C sink of eucalypt forests under N limitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
Rhizosphere bacteriome assemblage following initial fluctuations is delayed with nitrogen additions in tomato seedlings The role of tillage practices in wheat straw decomposition and shaping the associated microbial communities in Endocalcaric– Epigleyic Cambisol soil Soil legacies left by a 20-year eucalypt plantation and a secondary vegetation covers on young eucalypt plants and plant-soil feedback Increased microbial carbon use efficiency and turnover rate drive soil organic carbon storage in old-aged forest on the southeastern Tibetan Plateau Inoculation of the Morchella importuna mycosphere with Pseudomonas chlororaphis alleviated a soil-borne disease caused by Paecilomyces penicillatus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1