使用 FMO 方案进行 VQE-UCCSD 计算时发现的尺寸一致性和轨道不变性问题。

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-05-25 DOI:10.1002/jcc.27438
Kenji Sugisaki, Tatsuya Nakano, Yuji Mochizuki
{"title":"使用 FMO 方案进行 VQE-UCCSD 计算时发现的尺寸一致性和轨道不变性问题。","authors":"Kenji Sugisaki,&nbsp;Tatsuya Nakano,&nbsp;Yuji Mochizuki","doi":"10.1002/jcc.27438","DOIUrl":null,"url":null,"abstract":"<p>The fragment molecular orbital (FMO) scheme is one of the popular fragmentation-based methods and has the potential advantage of making the circuit shallow for quantum chemical calculations on quantum computers. In this study, we used a GPU-accelerated quantum simulator (cuQuantum) to perform the electron correlation part of the FMO calculation as unitary coupled-cluster singles and doubles (UCCSD) with the variational quantum eigensolver (VQE) for hydrogen-bonded (FH)<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow></math> and (FH)<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow></math>-H<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow></math>O systems with the STO-3G basis set. VQE-UCCSD calculations were performed using both canonical and localized MO sets, and the results were examined from the point of view of size-consistency and orbital-invariance affected by the Trotter error. It was found that the use of localized MO leads to better results, especially for (FH)<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow></math>-H<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow></math>O. The GPU acceleration was substantial for the simulations with larger numbers of qubits, and was about a factor of 6.7–7.7 for 18 qubit systems.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 26","pages":"2204-2213"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27438","citationCount":"0","resultStr":"{\"title\":\"Size-consistency and orbital-invariance issues revealed by VQE-UCCSD calculations with the FMO scheme\",\"authors\":\"Kenji Sugisaki,&nbsp;Tatsuya Nakano,&nbsp;Yuji Mochizuki\",\"doi\":\"10.1002/jcc.27438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fragment molecular orbital (FMO) scheme is one of the popular fragmentation-based methods and has the potential advantage of making the circuit shallow for quantum chemical calculations on quantum computers. In this study, we used a GPU-accelerated quantum simulator (cuQuantum) to perform the electron correlation part of the FMO calculation as unitary coupled-cluster singles and doubles (UCCSD) with the variational quantum eigensolver (VQE) for hydrogen-bonded (FH)<span></span><math>\\n <mrow>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow></math> and (FH)<span></span><math>\\n <mrow>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow></math>-H<span></span><math>\\n <mrow>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow></math>O systems with the STO-3G basis set. VQE-UCCSD calculations were performed using both canonical and localized MO sets, and the results were examined from the point of view of size-consistency and orbital-invariance affected by the Trotter error. It was found that the use of localized MO leads to better results, especially for (FH)<span></span><math>\\n <mrow>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow></math>-H<span></span><math>\\n <mrow>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow></math>O. The GPU acceleration was substantial for the simulations with larger numbers of qubits, and was about a factor of 6.7–7.7 for 18 qubit systems.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 26\",\"pages\":\"2204-2213\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.27438\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27438\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27438","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

片段分子轨道(FMO)方案是流行的基于片段的方法之一,其潜在优势是使量子计算机上的量子化学计算电路变得浅显。在本研究中,我们使用 GPU 加速量子模拟器(cuQuantum),以单元耦合簇单倍和双倍(UCCSD)与变异量子优解器(VQE)对氢键(FH)3 $$ {}_3 $$ 和(FH)2 $$ {}_2 $$ -H 2 $$ {}_2 $$ O 系统进行 FMO 计算的电子相关部分,并使用 STO-3G 基集。使用规范和局部 MO 集进行了 VQE-UCCSD 计算,并从尺寸一致性和轨道不变性的角度考察了受 Trotter 误差影响的结果。结果发现,使用局部MO能得到更好的结果,特别是对于(FH) 2 $$ {}_2 $$ -H 2 $$ {}_2 $$ O。对于量子比特数较多的模拟,GPU的加速效果非常明显,对于18量子比特系统,加速效果约为6.7-7.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Size-consistency and orbital-invariance issues revealed by VQE-UCCSD calculations with the FMO scheme

The fragment molecular orbital (FMO) scheme is one of the popular fragmentation-based methods and has the potential advantage of making the circuit shallow for quantum chemical calculations on quantum computers. In this study, we used a GPU-accelerated quantum simulator (cuQuantum) to perform the electron correlation part of the FMO calculation as unitary coupled-cluster singles and doubles (UCCSD) with the variational quantum eigensolver (VQE) for hydrogen-bonded (FH) 3 and (FH) 2 -H 2 O systems with the STO-3G basis set. VQE-UCCSD calculations were performed using both canonical and localized MO sets, and the results were examined from the point of view of size-consistency and orbital-invariance affected by the Trotter error. It was found that the use of localized MO leads to better results, especially for (FH) 2 -H 2 O. The GPU acceleration was substantial for the simulations with larger numbers of qubits, and was about a factor of 6.7–7.7 for 18 qubit systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information DC24: A new density coherence functional for multiconfiguration density‐coherence functional theory Excited state relaxation mechanisms of paracetamol and acetanilide. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods Assessing small molecule conformational sampling methods in molecular docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1