二氧化锡导带边缘电位的有效预测:表面氧空位的关键作用

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Computational Chemistry Pub Date : 2024-05-25 DOI:10.1002/jcc.27434
Gennaro Vincenzo Sannino, Adriana Pecoraro, Paola Delli Veneri, Michele Pavone, Ana Belén Muñoz-García
{"title":"二氧化锡导带边缘电位的有效预测:表面氧空位的关键作用","authors":"Gennaro Vincenzo Sannino,&nbsp;Adriana Pecoraro,&nbsp;Paola Delli Veneri,&nbsp;Michele Pavone,&nbsp;Ana Belén Muñoz-García","doi":"10.1002/jcc.27434","DOIUrl":null,"url":null,"abstract":"<p>Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO<sub>2</sub> conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO<sub>2</sub>, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO<sub>2</sub>, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO<sub>2</sub> features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO<sub>2</sub>-based materials and functional interfaces.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 26","pages":"2198-2203"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective prediction of SnO2 conduction band edge potential: The key role of surface oxygen vacancies\",\"authors\":\"Gennaro Vincenzo Sannino,&nbsp;Adriana Pecoraro,&nbsp;Paola Delli Veneri,&nbsp;Michele Pavone,&nbsp;Ana Belén Muñoz-García\",\"doi\":\"10.1002/jcc.27434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO<sub>2</sub> conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO<sub>2</sub>, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO<sub>2</sub>, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO<sub>2</sub> features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO<sub>2</sub>-based materials and functional interfaces.</p>\",\"PeriodicalId\":188,\"journal\":{\"name\":\"Journal of Computational Chemistry\",\"volume\":\"45 26\",\"pages\":\"2198-2203\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27434\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27434","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多项不同层次的理论研究都试图计算二氧化锡导带的绝对位置,而了解二氧化锡导带的绝对位置是将其有效应用于光电设备(如过氧化物太阳能电池)的关键。然而,预测的带边缘超出了实验测量的范围。在这项工作中,我们介绍了一种计算方案,旨在计算二氧化锡的导带最小值,得出与实验一致的结果。我们的分析指出了包含表面氧空位对正确描述这种材料的电子剖面所起的基本作用。我们探讨了桥和面内氧空位缺陷对二氧化锡结构和电子特性的影响,从原子论的角度解释了实验观测数据。研究结果强调了模拟这两类缺陷对准确预测二氧化锡特性的重要性,并提供了新的基本见解,可指导未来有关二氧化锡基材料和功能界面设计与优化的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective prediction of SnO2 conduction band edge potential: The key role of surface oxygen vacancies

Several theoretical studies at different levels of theory have attempted to calculate the absolute position of the SnO2 conduction band, whose knowledge is key for its effective application in optoelectronic devices such us, for example, perovskite solar cells. However, the predicted band edges fall outside the experimentally measured range. In this work, we introduce a computational scheme designed to calculate the conduction band minimum values of SnO2, yielding results aligned with experiments. Our analysis points out the fundamental role of encompassing surface oxygen vacancies to properly describe the electronic profile of this material. We explore the impact of both bridge and in-plane oxygen vacancy defects on the structural and electronic properties of SnO2, explaining from an atomistic perspective the experimental observables. The results underscore the importance of simulating both types of defects to accurately predict SnO2 features and provide new fundamental insights that can guide future studies concerning design and optimization of SnO2-based materials and functional interfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
期刊最新文献
Issue Information DC24: A new density coherence functional for multiconfiguration density‐coherence functional theory Excited state relaxation mechanisms of paracetamol and acetanilide. Stable, aromatic, and electrophilic azepinium ions: Design using quantum chemical methods Assessing small molecule conformational sampling methods in molecular docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1