次生代谢物在植物防御机制中的作用:分子和生物技术的启示

IF 7.3 2区 生物学 Q1 PLANT SCIENCES Phytochemistry Reviews Pub Date : 2024-05-24 DOI:10.1007/s11101-024-09976-2
R. Upadhyay, R. Saini, P. K. Shukla, K. N. Tiwari
{"title":"次生代谢物在植物防御机制中的作用:分子和生物技术的启示","authors":"R. Upadhyay,&nbsp;R. Saini,&nbsp;P. K. Shukla,&nbsp;K. N. Tiwari","doi":"10.1007/s11101-024-09976-2","DOIUrl":null,"url":null,"abstract":"<div><p>The plants produce secondary metabolites (SMs) as defence compounds against both abiotic and biotic stresses. These stresses instigate the secretion and release of SMs by up or down-regulating the concerned genes involved in their synthesis. The secretion of SMs varies with the plant's genetic constitution and accordingly-they are susceptible or resistant. These metabolites mostly act as deterrents or antifeedants, allelochemicals, toxins or precursors of other metabolites that defend plants from stresses. However, some pathogens use these metabolites as a signal for host recognition or nutrition rather than using them as toxins or deterrents. The SMs activate different signalling pathways e.g. terpenoids modulate the calcineurin pathway, sesquiterpenoids modulate the jasmonic acid and salicylic acid pathway, polyphenols activate the jasmonic acid and phenylpropanoid pathway, and alkaloids activate the salicylic acid pathway to protect against pathogens and herbivores. Polyphenolic compounds provide resistance to different microbes by expressing different pathogenesis-proteins and hypersensitive reaction-mediated cell death and eliminate pathogens by altering the membrane permeability (inhibiting efflux pump), cell wall integrity, suppressing enzyme activity, free radicals’ generation, inhibiting protein biosynthesis, damaging DNA and reducing the expression of virulent genes. Flavonoids help plants sustain pathogen stresses through the changes in the auxin transport process. The pathogen exposure upregulate genes of alkaloid synthesis pathways such as tyrosine decarboxylase (TyDC), S-norcoclurine synthase (NCS), codeinone reductase 2-like (COR-2), and StWRKY8 transcription factors which in turn accumulate alkaloids in large amounts. Plant exposure to pathogens leads to hypersensitivity reactions and phytoalexin accumulation. The plant's treatment of salicylic acid and jasmonic acid upregulated downstream transcription factors, increased the expression of defence proteins, triggered the synthesis of SMs, and provided resistance against multiple pathogens. Pathogens and herbivores have also coevolved to cope with defence metabolites by detoxifying the toxic metabolites, converting toxins into useful products, evolving their food choice, fast digestive system, expulsion of toxins, and down-regulation of the gene-producing secondary metabolites. This review article gives a molecular insight into the genes and regulatory proteins controlling the synthesis of SMs, which may help decipher the role of the biosynthetic pathway intermediates and thereby scoring genes providing resistance to various stresses. The article comprehensively describes the roles of different SMs in plant defence and their molecular mechanisms of action.</p></div>","PeriodicalId":733,"journal":{"name":"Phytochemistry Reviews","volume":"24 1","pages":"953 - 983"},"PeriodicalIF":7.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of secondary metabolites in plant defense mechanisms: a molecular and biotechnological insights\",\"authors\":\"R. Upadhyay,&nbsp;R. Saini,&nbsp;P. K. Shukla,&nbsp;K. N. Tiwari\",\"doi\":\"10.1007/s11101-024-09976-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The plants produce secondary metabolites (SMs) as defence compounds against both abiotic and biotic stresses. These stresses instigate the secretion and release of SMs by up or down-regulating the concerned genes involved in their synthesis. The secretion of SMs varies with the plant's genetic constitution and accordingly-they are susceptible or resistant. These metabolites mostly act as deterrents or antifeedants, allelochemicals, toxins or precursors of other metabolites that defend plants from stresses. However, some pathogens use these metabolites as a signal for host recognition or nutrition rather than using them as toxins or deterrents. The SMs activate different signalling pathways e.g. terpenoids modulate the calcineurin pathway, sesquiterpenoids modulate the jasmonic acid and salicylic acid pathway, polyphenols activate the jasmonic acid and phenylpropanoid pathway, and alkaloids activate the salicylic acid pathway to protect against pathogens and herbivores. Polyphenolic compounds provide resistance to different microbes by expressing different pathogenesis-proteins and hypersensitive reaction-mediated cell death and eliminate pathogens by altering the membrane permeability (inhibiting efflux pump), cell wall integrity, suppressing enzyme activity, free radicals’ generation, inhibiting protein biosynthesis, damaging DNA and reducing the expression of virulent genes. Flavonoids help plants sustain pathogen stresses through the changes in the auxin transport process. The pathogen exposure upregulate genes of alkaloid synthesis pathways such as tyrosine decarboxylase (TyDC), S-norcoclurine synthase (NCS), codeinone reductase 2-like (COR-2), and StWRKY8 transcription factors which in turn accumulate alkaloids in large amounts. Plant exposure to pathogens leads to hypersensitivity reactions and phytoalexin accumulation. The plant's treatment of salicylic acid and jasmonic acid upregulated downstream transcription factors, increased the expression of defence proteins, triggered the synthesis of SMs, and provided resistance against multiple pathogens. Pathogens and herbivores have also coevolved to cope with defence metabolites by detoxifying the toxic metabolites, converting toxins into useful products, evolving their food choice, fast digestive system, expulsion of toxins, and down-regulation of the gene-producing secondary metabolites. This review article gives a molecular insight into the genes and regulatory proteins controlling the synthesis of SMs, which may help decipher the role of the biosynthetic pathway intermediates and thereby scoring genes providing resistance to various stresses. The article comprehensively describes the roles of different SMs in plant defence and their molecular mechanisms of action.</p></div>\",\"PeriodicalId\":733,\"journal\":{\"name\":\"Phytochemistry Reviews\",\"volume\":\"24 1\",\"pages\":\"953 - 983\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytochemistry Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11101-024-09976-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemistry Reviews","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11101-024-09976-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of secondary metabolites in plant defense mechanisms: a molecular and biotechnological insights

The plants produce secondary metabolites (SMs) as defence compounds against both abiotic and biotic stresses. These stresses instigate the secretion and release of SMs by up or down-regulating the concerned genes involved in their synthesis. The secretion of SMs varies with the plant's genetic constitution and accordingly-they are susceptible or resistant. These metabolites mostly act as deterrents or antifeedants, allelochemicals, toxins or precursors of other metabolites that defend plants from stresses. However, some pathogens use these metabolites as a signal for host recognition or nutrition rather than using them as toxins or deterrents. The SMs activate different signalling pathways e.g. terpenoids modulate the calcineurin pathway, sesquiterpenoids modulate the jasmonic acid and salicylic acid pathway, polyphenols activate the jasmonic acid and phenylpropanoid pathway, and alkaloids activate the salicylic acid pathway to protect against pathogens and herbivores. Polyphenolic compounds provide resistance to different microbes by expressing different pathogenesis-proteins and hypersensitive reaction-mediated cell death and eliminate pathogens by altering the membrane permeability (inhibiting efflux pump), cell wall integrity, suppressing enzyme activity, free radicals’ generation, inhibiting protein biosynthesis, damaging DNA and reducing the expression of virulent genes. Flavonoids help plants sustain pathogen stresses through the changes in the auxin transport process. The pathogen exposure upregulate genes of alkaloid synthesis pathways such as tyrosine decarboxylase (TyDC), S-norcoclurine synthase (NCS), codeinone reductase 2-like (COR-2), and StWRKY8 transcription factors which in turn accumulate alkaloids in large amounts. Plant exposure to pathogens leads to hypersensitivity reactions and phytoalexin accumulation. The plant's treatment of salicylic acid and jasmonic acid upregulated downstream transcription factors, increased the expression of defence proteins, triggered the synthesis of SMs, and provided resistance against multiple pathogens. Pathogens and herbivores have also coevolved to cope with defence metabolites by detoxifying the toxic metabolites, converting toxins into useful products, evolving their food choice, fast digestive system, expulsion of toxins, and down-regulation of the gene-producing secondary metabolites. This review article gives a molecular insight into the genes and regulatory proteins controlling the synthesis of SMs, which may help decipher the role of the biosynthetic pathway intermediates and thereby scoring genes providing resistance to various stresses. The article comprehensively describes the roles of different SMs in plant defence and their molecular mechanisms of action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytochemistry Reviews
Phytochemistry Reviews PLANT SCIENCES-
CiteScore
16.30
自引率
2.60%
发文量
54
审稿时长
2 months
期刊介绍: Phytochemistry Reviews is the sole review journal encompassing all facets of phytochemistry. It publishes peer-reviewed papers in six issues annually, including topical issues often stemming from meetings organized by the Phytochemical Society of Europe. Additionally, the journal welcomes original review papers that contribute to advancing knowledge in various aspects of plant chemistry, function, biosynthesis, effects on plant and animal physiology, pathology, and their application in agriculture and industry. Invited meeting papers are supplemented with additional review papers, providing a comprehensive overview of the current status across all areas of phytochemistry.
期刊最新文献
Nanoparticles as new elicitors for the production of bioactive and phytochemicals in vitro and in vivo plant culture The anticancer properties of harmine and its derivatives Mint (Mentha spp.) essential oil extraction: from conventional to emerging technologies Elicitation as a tool to improve the accumulation of secondary metabolites in Cannabis sativa Natural products against gram-negative bacteria: promising antimicrobials in future complementary medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1