{"title":"通过火花等离子烧结超细 TiC 粉末制备超高硬度 TiC-W-Ni 金属陶瓷","authors":"Xiao-Dong Kang, Guo-Hua Zhang","doi":"10.1007/s12540-024-01701-0","DOIUrl":null,"url":null,"abstract":"<div><p>High-performance TiC-W-Ni cermets were fabricated employing Ni powder, self-synthesized ultra-fine TiC and W powders through spark plasma sintering. The impacts of different W and Ni contents on the microstructure and mechanical properties of TiC-W-Ni cermets were investigated. The findings indicated that all samples displayed a core-rim structure, with the dark-colored core being incompletely dissolved TiC and the rim phase consisting of (Ti, W)C solid solution. An increase in W content led to a larger fractional volume of the rim phase and finer grain size of cermet. However, agglomeration and abnormal growth of grains also increased. The cermet with a composition of TiC-10 W-20Ni achieved the highest fracture toughness of 9.51 MPa·m<sup>1/2</sup> and a hardness of 2014 HV<sub>30</sub>. In contrast, the cermet with a composition of TiC-20 W-10Ni achieved the highest hardness value of 2257 HV<sub>30</sub> and a fracture toughness of 7.87 MPa·m<sup>1/2</sup>. A decrease in Ni content led to a decrease in transgranular fracture and an increase in intergranular fracture, thus causing a decrease in fracture toughness. At a constant ratio of W to Ni, increasing TiC content from 70 wt% to 80 wt% reduced the quantity of grains with the core-rim construction but increased the number of abnormally grown grains, and thereby made an increase in hardness and a slight decrease in toughness.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 11","pages":"3230 - 3242"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-High Hardness TiC-W-Ni Cermets Prepared by Spark Plasma Sintering of Ultra-Fine TiC Powder\",\"authors\":\"Xiao-Dong Kang, Guo-Hua Zhang\",\"doi\":\"10.1007/s12540-024-01701-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-performance TiC-W-Ni cermets were fabricated employing Ni powder, self-synthesized ultra-fine TiC and W powders through spark plasma sintering. The impacts of different W and Ni contents on the microstructure and mechanical properties of TiC-W-Ni cermets were investigated. The findings indicated that all samples displayed a core-rim structure, with the dark-colored core being incompletely dissolved TiC and the rim phase consisting of (Ti, W)C solid solution. An increase in W content led to a larger fractional volume of the rim phase and finer grain size of cermet. However, agglomeration and abnormal growth of grains also increased. The cermet with a composition of TiC-10 W-20Ni achieved the highest fracture toughness of 9.51 MPa·m<sup>1/2</sup> and a hardness of 2014 HV<sub>30</sub>. In contrast, the cermet with a composition of TiC-20 W-10Ni achieved the highest hardness value of 2257 HV<sub>30</sub> and a fracture toughness of 7.87 MPa·m<sup>1/2</sup>. A decrease in Ni content led to a decrease in transgranular fracture and an increase in intergranular fracture, thus causing a decrease in fracture toughness. At a constant ratio of W to Ni, increasing TiC content from 70 wt% to 80 wt% reduced the quantity of grains with the core-rim construction but increased the number of abnormally grown grains, and thereby made an increase in hardness and a slight decrease in toughness.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"30 11\",\"pages\":\"3230 - 3242\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01701-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01701-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
利用镍粉、自合成超细 TiC 粉和 W 粉,通过火花等离子烧结制造了高性能 TiC-W-Ni 金属陶瓷。研究了不同 W 和 Ni 含量对 TiC-W-Ni 金属陶瓷微观结构和机械性能的影响。研究结果表明,所有样品都呈现出核心-边缘结构,深色核心是未完全溶解的 TiC,边缘相由(Ti、W)C 固溶体组成。W 含量的增加导致边缘相的体积增大,金属陶瓷的晶粒尺寸变细。然而,晶粒的团聚和异常生长也有所增加。成分为 TiC-10 W-20Ni 的金属陶瓷的断裂韧性最高,达到 9.51 MPa-m1/2,硬度为 2014 HV30。相比之下,TiC-20 W-10Ni 成分的金属陶瓷的硬度值最高,为 2257 HV30,断裂韧性为 7.87 MPa-m1/2。镍含量的减少导致晶间断裂的减少和晶间断裂的增加,从而导致断裂韧性的降低。在 W 与 Ni 的比例不变的情况下,TiC 含量从 70 wt% 增加到 80 wt%,减少了具有核心-边缘结构的晶粒数量,但增加了异常生长晶粒的数量,从而使硬度增加,韧性略有下降。
Ultra-High Hardness TiC-W-Ni Cermets Prepared by Spark Plasma Sintering of Ultra-Fine TiC Powder
High-performance TiC-W-Ni cermets were fabricated employing Ni powder, self-synthesized ultra-fine TiC and W powders through spark plasma sintering. The impacts of different W and Ni contents on the microstructure and mechanical properties of TiC-W-Ni cermets were investigated. The findings indicated that all samples displayed a core-rim structure, with the dark-colored core being incompletely dissolved TiC and the rim phase consisting of (Ti, W)C solid solution. An increase in W content led to a larger fractional volume of the rim phase and finer grain size of cermet. However, agglomeration and abnormal growth of grains also increased. The cermet with a composition of TiC-10 W-20Ni achieved the highest fracture toughness of 9.51 MPa·m1/2 and a hardness of 2014 HV30. In contrast, the cermet with a composition of TiC-20 W-10Ni achieved the highest hardness value of 2257 HV30 and a fracture toughness of 7.87 MPa·m1/2. A decrease in Ni content led to a decrease in transgranular fracture and an increase in intergranular fracture, thus causing a decrease in fracture toughness. At a constant ratio of W to Ni, increasing TiC content from 70 wt% to 80 wt% reduced the quantity of grains with the core-rim construction but increased the number of abnormally grown grains, and thereby made an increase in hardness and a slight decrease in toughness.
期刊介绍:
Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.