基于声学特性研究的圆柱形锂离子电池异常大电流放电检测与分析

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC World Electric Vehicle Journal Pub Date : 2024-05-24 DOI:10.3390/wevj15060229
Nan Zhou, Kunbai Wang, Xiang Shi, Zeyu Chen
{"title":"基于声学特性研究的圆柱形锂离子电池异常大电流放电检测与分析","authors":"Nan Zhou, Kunbai Wang, Xiang Shi, Zeyu Chen","doi":"10.3390/wevj15060229","DOIUrl":null,"url":null,"abstract":"The improvement of battery management systems (BMSs) requires the incorporation of advanced battery status detection technologies to facilitate early warnings of abnormal conditions. In this study, acoustic data from batteries under two discharge rates, 0.5 C and 3 C, were collected using a specially designed battery acoustic test system. By analyzing selected acoustic parameters in the time domain, the acoustic signals exhibited noticeable differences with the change in discharge current, highlighting the potential of acoustic signals for current anomaly detection. In the frequency domain analysis, distinct variations in the frequency domain parameters of the acoustic response signal were observed at different discharge currents. The identification of acoustic characteristic parameters demonstrates a robust capability to detect short-term high-current discharges, which reflects the sensitivity of the battery’s internal structure to varying operational stresses. Acoustic emission (AE) technology, coupled with electrode measurements, effectively tracks unusually high discharge currents. The acoustic signals show a clear correlation with discharge currents, indicating that selecting key acoustic parameters can reveal the battery structure’s response to high currents. This approach could serve as a crucial diagnostic tool for identifying battery abnormalities.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and Analysis of Abnormal High-Current Discharge of Cylindrical Lithium-Ion Battery Based on Acoustic Characteristics Research\",\"authors\":\"Nan Zhou, Kunbai Wang, Xiang Shi, Zeyu Chen\",\"doi\":\"10.3390/wevj15060229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improvement of battery management systems (BMSs) requires the incorporation of advanced battery status detection technologies to facilitate early warnings of abnormal conditions. In this study, acoustic data from batteries under two discharge rates, 0.5 C and 3 C, were collected using a specially designed battery acoustic test system. By analyzing selected acoustic parameters in the time domain, the acoustic signals exhibited noticeable differences with the change in discharge current, highlighting the potential of acoustic signals for current anomaly detection. In the frequency domain analysis, distinct variations in the frequency domain parameters of the acoustic response signal were observed at different discharge currents. The identification of acoustic characteristic parameters demonstrates a robust capability to detect short-term high-current discharges, which reflects the sensitivity of the battery’s internal structure to varying operational stresses. Acoustic emission (AE) technology, coupled with electrode measurements, effectively tracks unusually high discharge currents. The acoustic signals show a clear correlation with discharge currents, indicating that selecting key acoustic parameters can reveal the battery structure’s response to high currents. This approach could serve as a crucial diagnostic tool for identifying battery abnormalities.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj15060229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15060229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

要改进电池管理系统(BMS),就必须采用先进的电池状态检测技术,以便对异常情况发出预警。本研究使用专门设计的电池声学测试系统收集了电池在 0.5 C 和 3 C 两种放电速率下的声学数据。通过在时域分析选定的声学参数,声学信号随着放电电流的变化呈现出明显的差异,突出了声学信号在电流异常检测方面的潜力。在频域分析中,观察到不同放电电流下声学响应信号的频域参数有明显变化。声学特征参数的识别证明了检测短期大电流放电的强大能力,这反映了电池内部结构对不同运行压力的敏感性。声发射 (AE) 技术与电极测量相结合,可有效跟踪异常高放电电流。声学信号与放电电流有明显的相关性,表明选择关键的声学参数可以揭示电池结构对大电流的反应。这种方法可以作为识别电池异常的重要诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection and Analysis of Abnormal High-Current Discharge of Cylindrical Lithium-Ion Battery Based on Acoustic Characteristics Research
The improvement of battery management systems (BMSs) requires the incorporation of advanced battery status detection technologies to facilitate early warnings of abnormal conditions. In this study, acoustic data from batteries under two discharge rates, 0.5 C and 3 C, were collected using a specially designed battery acoustic test system. By analyzing selected acoustic parameters in the time domain, the acoustic signals exhibited noticeable differences with the change in discharge current, highlighting the potential of acoustic signals for current anomaly detection. In the frequency domain analysis, distinct variations in the frequency domain parameters of the acoustic response signal were observed at different discharge currents. The identification of acoustic characteristic parameters demonstrates a robust capability to detect short-term high-current discharges, which reflects the sensitivity of the battery’s internal structure to varying operational stresses. Acoustic emission (AE) technology, coupled with electrode measurements, effectively tracks unusually high discharge currents. The acoustic signals show a clear correlation with discharge currents, indicating that selecting key acoustic parameters can reveal the battery structure’s response to high currents. This approach could serve as a crucial diagnostic tool for identifying battery abnormalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
期刊最新文献
Vibration Performance Analysis of a Yokeless Stator Axial Flux PM Motor with Distributed Winding for Electric Vehicle Application Investment Decision-Making to Select Converted Electric Motorcycle Tests in Indonesia Research on the Driving Behavior and Decision-Making of Autonomous Vehicles (AVs) in Mixed Traffic Flow by Integrating Bilayer-GRU-Att and GWO-XGBoost Models A Comprehensive Analysis of Supercapacitors and Their Equivalent Circuits—A Review Anti-Rollover Trajectory Planning Method for Heavy Vehicles in Human–Machine Cooperative Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1