斯里兰卡凯拉尼河流域洪水流域降雨侵蚀性评估

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Hydroinformatics Pub Date : 2024-05-23 DOI:10.2166/hydro.2024.202
Zumry Niyas, Charuni Madhushani, M. Gunathilake, Vindhya Basnayaka, Komali Kantamaneni, Upaka S. Rathnayake
{"title":"斯里兰卡凯拉尼河流域洪水流域降雨侵蚀性评估","authors":"Zumry Niyas, Charuni Madhushani, M. Gunathilake, Vindhya Basnayaka, Komali Kantamaneni, Upaka S. Rathnayake","doi":"10.2166/hydro.2024.202","DOIUrl":null,"url":null,"abstract":"\n This study evaluates the rainfall erosivity (RE) and erosivity density (ED) over the Kelani River basin, Sri Lanka for a period of 31 years (1990–2020). The river basin is well known for its annual floods during the southwestern monsoon season and severe erosion including landslides can be observed. The catchment was analyzed for its RE using the Wischmeier and Smith algorithm and for its ED using Kinnel's algorithm. The monthly rainfall data spreading over the river basin were used to analyze the monthly, seasonal, and annual RE and ED. Interestingly, the annual RE showed a linear increasing trend line over 31 years, and a maximum value of 2,831.41 MJ mm ha−1 h−1 yr−1 was able to be observed in the year 2016. The RE peaks in May which is in the southwestern monsoon season. This reveals that the risk of soil erosion in the basin is high in the southwestern monsoon season. In addition, land use and land cover changes over the years have adversely impacted the erosion rates. Therefore, it is highly recommended to investigate soil erosion in-depth and then implement relevant regulations to conserve the soil layers upstream of the river basin.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainfall erosivity assessment over a flooding basin, Kelani River basin, Sri Lanka\",\"authors\":\"Zumry Niyas, Charuni Madhushani, M. Gunathilake, Vindhya Basnayaka, Komali Kantamaneni, Upaka S. Rathnayake\",\"doi\":\"10.2166/hydro.2024.202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study evaluates the rainfall erosivity (RE) and erosivity density (ED) over the Kelani River basin, Sri Lanka for a period of 31 years (1990–2020). The river basin is well known for its annual floods during the southwestern monsoon season and severe erosion including landslides can be observed. The catchment was analyzed for its RE using the Wischmeier and Smith algorithm and for its ED using Kinnel's algorithm. The monthly rainfall data spreading over the river basin were used to analyze the monthly, seasonal, and annual RE and ED. Interestingly, the annual RE showed a linear increasing trend line over 31 years, and a maximum value of 2,831.41 MJ mm ha−1 h−1 yr−1 was able to be observed in the year 2016. The RE peaks in May which is in the southwestern monsoon season. This reveals that the risk of soil erosion in the basin is high in the southwestern monsoon season. In addition, land use and land cover changes over the years have adversely impacted the erosion rates. Therefore, it is highly recommended to investigate soil erosion in-depth and then implement relevant regulations to conserve the soil layers upstream of the river basin.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.202\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.202","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了斯里兰卡凯拉尼河流域 31 年间(1990-2020 年)的降雨侵蚀率(RE)和侵蚀密度(ED)。众所周知,该流域每年在西南季风季节都会发生洪水,并出现严重的侵蚀现象,包括山体滑坡。该流域的 RE 分析采用 Wischmeier 和 Smith 算法,ED 分析采用 Kinnel 算法。利用遍布流域的月降雨量数据分析了月度、季节和年度 RE 和 ED。有趣的是,年可再生能源在 31 年中呈现线性增长趋势线,在 2016 年观测到最大值 2,831.41 MJ mm ha-1 h-1 yr-1。每年 RE 的峰值出现在西南季风季节的 5 月份。这表明该流域在西南季风季节的水土流失风险较高。此外,多年来土地利用和土地覆盖的变化也对水土流失率产生了不利影响。因此,强烈建议对水土流失进行深入调查,然后实施相关法规,以保护流域上游的土壤层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rainfall erosivity assessment over a flooding basin, Kelani River basin, Sri Lanka
This study evaluates the rainfall erosivity (RE) and erosivity density (ED) over the Kelani River basin, Sri Lanka for a period of 31 years (1990–2020). The river basin is well known for its annual floods during the southwestern monsoon season and severe erosion including landslides can be observed. The catchment was analyzed for its RE using the Wischmeier and Smith algorithm and for its ED using Kinnel's algorithm. The monthly rainfall data spreading over the river basin were used to analyze the monthly, seasonal, and annual RE and ED. Interestingly, the annual RE showed a linear increasing trend line over 31 years, and a maximum value of 2,831.41 MJ mm ha−1 h−1 yr−1 was able to be observed in the year 2016. The RE peaks in May which is in the southwestern monsoon season. This reveals that the risk of soil erosion in the basin is high in the southwestern monsoon season. In addition, land use and land cover changes over the years have adversely impacted the erosion rates. Therefore, it is highly recommended to investigate soil erosion in-depth and then implement relevant regulations to conserve the soil layers upstream of the river basin.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
期刊最新文献
Sensitivity of model-based leakage localisation in water distribution networks to water demand sampling rates and spatio-temporal data gaps Efficient functioning of a sewer system: application of novel hybrid machine learning methods for the prediction of particle Froude number Quantile mapping technique for enhancing satellite-derived precipitation data in hydrological modelling: a case study of the Lam River Basin, Vietnam Development and application of a hybrid artificial neural network model for simulating future stream flows in catchments with limited in situ observed data Formation of meandering streams in a young floodplain within the Yarlung Tsangpo Grand Canyon in the Tibetan Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1