{"title":"带透镜微针的生物相容性可植入水凝胶光波导,用于增强光动力疗法中的光传输","authors":"Lieber Po-Hung Li, Ai-Wei Li, Wei-Yu Chen, Chia-Hsiung Cheng, Yu-Bin Chen, Cheng-Yang Liu","doi":"10.1002/adpr.202400031","DOIUrl":null,"url":null,"abstract":"<p>The finite penetration depth of light in biological tissues is a practical constraint in light-induced therapies, such as antimicrobial light therapy, photothermal therapy, and photodynamic cancer therapy. Herein, a biocompatible and implantable device, termed hydrogel planar waveguide with lens-microneedles, for light delivery in deep tissue is demonstrated. The prototype device, integrated planar waveguide and lens-microneedles, is fabricated by press-molding polyethylene glycol diacrylate polymers. The optical beams through the lens-microneedles are focused at a specific point to realize the optimal intensity profile in the tissue. The adequate treatment depth and region for the hydrogel planar waveguide with five lens-microneedles are extended to 24 mm and 3.1 cm<sup>2</sup>. The photoswitchable chemotherapeutic against colorectal cancer cells is switched by using different hydrogel waveguides. The performances of hydrogel-waveguide-enabled photoswitching are characterized by the dose responses from the optical microscope, crystal violet staining, and MTT assays. The anticancer drug activated by the hydrogel planar waveguide with five lens-microneedles is shown to be twice as effective as the other fibers and waveguides in causing cancer cell death. The proposed biodegradable waveguide can be utilized for long-term light delivery and does not require to be removed as it is gradually resorbed by the tissue. The results point to a new paradigm for widespread use in photomedicine.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400031","citationCount":"0","resultStr":"{\"title\":\"Biocompatible and Implantable Hydrogel Optical Waveguide with Lens-Microneedles for Enhancing Light Delivery in Photodynamic Therapy\",\"authors\":\"Lieber Po-Hung Li, Ai-Wei Li, Wei-Yu Chen, Chia-Hsiung Cheng, Yu-Bin Chen, Cheng-Yang Liu\",\"doi\":\"10.1002/adpr.202400031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The finite penetration depth of light in biological tissues is a practical constraint in light-induced therapies, such as antimicrobial light therapy, photothermal therapy, and photodynamic cancer therapy. Herein, a biocompatible and implantable device, termed hydrogel planar waveguide with lens-microneedles, for light delivery in deep tissue is demonstrated. The prototype device, integrated planar waveguide and lens-microneedles, is fabricated by press-molding polyethylene glycol diacrylate polymers. The optical beams through the lens-microneedles are focused at a specific point to realize the optimal intensity profile in the tissue. The adequate treatment depth and region for the hydrogel planar waveguide with five lens-microneedles are extended to 24 mm and 3.1 cm<sup>2</sup>. The photoswitchable chemotherapeutic against colorectal cancer cells is switched by using different hydrogel waveguides. The performances of hydrogel-waveguide-enabled photoswitching are characterized by the dose responses from the optical microscope, crystal violet staining, and MTT assays. The anticancer drug activated by the hydrogel planar waveguide with five lens-microneedles is shown to be twice as effective as the other fibers and waveguides in causing cancer cell death. The proposed biodegradable waveguide can be utilized for long-term light delivery and does not require to be removed as it is gradually resorbed by the tissue. The results point to a new paradigm for widespread use in photomedicine.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biocompatible and Implantable Hydrogel Optical Waveguide with Lens-Microneedles for Enhancing Light Delivery in Photodynamic Therapy
The finite penetration depth of light in biological tissues is a practical constraint in light-induced therapies, such as antimicrobial light therapy, photothermal therapy, and photodynamic cancer therapy. Herein, a biocompatible and implantable device, termed hydrogel planar waveguide with lens-microneedles, for light delivery in deep tissue is demonstrated. The prototype device, integrated planar waveguide and lens-microneedles, is fabricated by press-molding polyethylene glycol diacrylate polymers. The optical beams through the lens-microneedles are focused at a specific point to realize the optimal intensity profile in the tissue. The adequate treatment depth and region for the hydrogel planar waveguide with five lens-microneedles are extended to 24 mm and 3.1 cm2. The photoswitchable chemotherapeutic against colorectal cancer cells is switched by using different hydrogel waveguides. The performances of hydrogel-waveguide-enabled photoswitching are characterized by the dose responses from the optical microscope, crystal violet staining, and MTT assays. The anticancer drug activated by the hydrogel planar waveguide with five lens-microneedles is shown to be twice as effective as the other fibers and waveguides in causing cancer cell death. The proposed biodegradable waveguide can be utilized for long-term light delivery and does not require to be removed as it is gradually resorbed by the tissue. The results point to a new paradigm for widespread use in photomedicine.