利用遥感和地理信息系统分析印度巽他班三角洲海岸线和红树林覆盖率的十年变化(1980-2021 年

IF 2.8 2区 地球科学 Q1 OCEANOGRAPHY Journal of Physical Oceanography Pub Date : 2024-05-23 DOI:10.1175/jpo-d-23-0019.1
Sipra Biswas, Kallol Sarkar, Tapan Kumar Das
{"title":"利用遥感和地理信息系统分析印度巽他班三角洲海岸线和红树林覆盖率的十年变化(1980-2021 年","authors":"Sipra Biswas, Kallol Sarkar, Tapan Kumar Das","doi":"10.1175/jpo-d-23-0019.1","DOIUrl":null,"url":null,"abstract":"\nBeing situated in the estuary of the flood-dominated Hooghly River system, the macrotidal Indian Sundarban Delta (ISD) has become one of the most complex, dynamic and rapidly changing landforms on the earth’s surface. To study horizontal areal shifting of shoreline and its impact on mangrove-cover in the region, United State Geological Survey (USGS)-satellite data of 1980, 1990, 2000, 2010 and 2021 were used. Remote sensing and GIS techniques were employed in the investigation. Simultaneous prograding and retrograding shoreline shifting was distinguished almost in all the parts, though sediment-starved eastern and macrotidally more active southern lobes experienced dominantly retreating shift, and sediment-engorged western lobe demonstrated to be more dynamic. Net areal change over north-south tracks followed the trend of decreasing accretion to increasing erosion while going from west to east, whereas that over west-east tracks followed the trend of exponentially increasing erosion while going from north to south. Overall accretion of ∼91 sq. km in the ISD accounted for augmentation of sparse vegetation of ∼13 sq. km, whereas, ∼243 sq. km erosion called for depletion of sparse & moderate vegetation of ∼18 & ∼174 sq. km respectively over the 41-year period. Various oceanographic and riparian forces and actions, episodic natural events etc. vis-a-vis several anthropogenic interventions— all together contributed to such changes. The findings may help the coastal environmentalists, professionals, planners, decision-makers and implementers in formulating and taking up of suitable strategic measures for integrated and effective coastal zone management in this estuarine wetland-forest.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decadal changes (1980-2021) of shoreline and mangrove cover in Sundarban Delta, India using remote sensing and GIS\",\"authors\":\"Sipra Biswas, Kallol Sarkar, Tapan Kumar Das\",\"doi\":\"10.1175/jpo-d-23-0019.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nBeing situated in the estuary of the flood-dominated Hooghly River system, the macrotidal Indian Sundarban Delta (ISD) has become one of the most complex, dynamic and rapidly changing landforms on the earth’s surface. To study horizontal areal shifting of shoreline and its impact on mangrove-cover in the region, United State Geological Survey (USGS)-satellite data of 1980, 1990, 2000, 2010 and 2021 were used. Remote sensing and GIS techniques were employed in the investigation. Simultaneous prograding and retrograding shoreline shifting was distinguished almost in all the parts, though sediment-starved eastern and macrotidally more active southern lobes experienced dominantly retreating shift, and sediment-engorged western lobe demonstrated to be more dynamic. Net areal change over north-south tracks followed the trend of decreasing accretion to increasing erosion while going from west to east, whereas that over west-east tracks followed the trend of exponentially increasing erosion while going from north to south. Overall accretion of ∼91 sq. km in the ISD accounted for augmentation of sparse vegetation of ∼13 sq. km, whereas, ∼243 sq. km erosion called for depletion of sparse & moderate vegetation of ∼18 & ∼174 sq. km respectively over the 41-year period. Various oceanographic and riparian forces and actions, episodic natural events etc. vis-a-vis several anthropogenic interventions— all together contributed to such changes. The findings may help the coastal environmentalists, professionals, planners, decision-makers and implementers in formulating and taking up of suitable strategic measures for integrated and effective coastal zone management in this estuarine wetland-forest.\",\"PeriodicalId\":56115,\"journal\":{\"name\":\"Journal of Physical Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physical Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jpo-d-23-0019.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-23-0019.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

印度巽他班三角洲(Indian Sundarban Delta,ISD)位于以洪水为主的胡格利河(Hooghly)水系的河口,是地球表面最复杂、最具活力、变化最快的地貌之一。为了研究该地区海岸线的水平面积变化及其对红树林覆盖率的影响,我们使用了美国国家地质调查局(USGS)1980 年、1990 年、2000 年、2010 年和 2021 年的卫星数据。调查采用了遥感和地理信息系统技术。几乎所有地区的海岸线都同时发生了前倾和后退的变化,但沉积物匮乏的东部和宏观上更为活跃的南部裂片主要发生了后退的变化,而沉积物富集的西部裂片则更具活力。南北轨道上的净面积变化趋势是自西向东,增生减少,侵蚀增加;而自西向东轨道上的净面积变化趋势是自北向南,侵蚀成倍增加。在 41 年的时间里,基础设施服务区总面积增加了 91 平方公里,稀疏植被面积增加了 13 平方公里,而侵蚀面积增加了 243 平方公里,稀疏和中等植被面积分别减少了 18 平方公里和 174 平方公里。各种海洋和河岸力量和行动、偶发自然事件等,再加上一些人为干预,共同促成了这种变化。研究结果有助于沿海环境学家、专业人员、规划人员、决策者和实施者制定和采取适当 的战略措施,对这片河口湿地森林进行综合有效的沿海地区管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decadal changes (1980-2021) of shoreline and mangrove cover in Sundarban Delta, India using remote sensing and GIS
Being situated in the estuary of the flood-dominated Hooghly River system, the macrotidal Indian Sundarban Delta (ISD) has become one of the most complex, dynamic and rapidly changing landforms on the earth’s surface. To study horizontal areal shifting of shoreline and its impact on mangrove-cover in the region, United State Geological Survey (USGS)-satellite data of 1980, 1990, 2000, 2010 and 2021 were used. Remote sensing and GIS techniques were employed in the investigation. Simultaneous prograding and retrograding shoreline shifting was distinguished almost in all the parts, though sediment-starved eastern and macrotidally more active southern lobes experienced dominantly retreating shift, and sediment-engorged western lobe demonstrated to be more dynamic. Net areal change over north-south tracks followed the trend of decreasing accretion to increasing erosion while going from west to east, whereas that over west-east tracks followed the trend of exponentially increasing erosion while going from north to south. Overall accretion of ∼91 sq. km in the ISD accounted for augmentation of sparse vegetation of ∼13 sq. km, whereas, ∼243 sq. km erosion called for depletion of sparse & moderate vegetation of ∼18 & ∼174 sq. km respectively over the 41-year period. Various oceanographic and riparian forces and actions, episodic natural events etc. vis-a-vis several anthropogenic interventions— all together contributed to such changes. The findings may help the coastal environmentalists, professionals, planners, decision-makers and implementers in formulating and taking up of suitable strategic measures for integrated and effective coastal zone management in this estuarine wetland-forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
20.00%
发文量
200
审稿时长
4.5 months
期刊介绍: The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.
期刊最新文献
Modulation of internal solitary waves by one mesoscale eddy pair west of the Luzon Strait The eastern Mediterranean boundary current: seasonality, stability, and spiral formation Tidal conversion into vertical normal modes by near-critical topography An overlooked component of the meridional overturning circulation Models of the sea-surface height expression of the internal-wave continuum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1