Margaux Simon, Romain Christiaens, Philippe Janssens, Sonia Collin
{"title":"麦芽糖负性酿酒酵母的意外行为:谷胱甘肽化的多官能团硫醇释放量高于胱氨酰化的 S-共轭物释放量","authors":"Margaux Simon, Romain Christiaens, Philippe Janssens, Sonia Collin","doi":"10.3390/fermentation10060276","DOIUrl":null,"url":null,"abstract":"At present, non-alcoholic and low-alcoholic beers (NABLABs), in addition to their premature sensitivity to oxidation, still suffer from a lack of fruity fermentation aromas. Maltose/maltotriose-negative yeasts offer a highly attractive alternative for creating diversified pleasant aromas and/or eliminating off-flavors in NABLAB production. The aim of this study was to explore the potential of Saccharomyces cerevisiae var. chevalieri, SafBrewTM LA-01 to release fruity polyfunctional thiols from glutathionylated (G-) and cysteinylated (Cys-) precursors. Interestingly, it proved to release free thiols from their glutathionylated S-conjugate much more efficiently (0.34% from G-3-sulfanylhexanol in 15 °P wort after seven days at 24 °C) than the best S. pastorianus strains previously screened (0.13% for lager yeast L7). On the other hand, despite its classification as a S. cerevisiae strain, it showed an inefficient use of cysteinylated precursors, although the release efficiency was slightly higher under NABLAB fermentation conditions (6 °P; 3 days at 20 °C). Under these conditions, as expected, LA-01 consumed only glucose, fructose, and saccharose (0.4% v/v ethanol formation) and produced only low levels of fermentation esters (1.6 mg/L in total) and dimethylsulfide (5 µg/L). The POF+ character of LA-01 also brought significant levels of 4-vinylguaiacol (810 μg/L), which could give to NABLABs the flavors of a white beer.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"14 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unexpected Behavior of a Maltose-Negative Saccharomyces cerevisiae Yeast: Higher Release of Polyfunctional Thiols from Glutathionylated Than from Cysteinylated S-Conjugates\",\"authors\":\"Margaux Simon, Romain Christiaens, Philippe Janssens, Sonia Collin\",\"doi\":\"10.3390/fermentation10060276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, non-alcoholic and low-alcoholic beers (NABLABs), in addition to their premature sensitivity to oxidation, still suffer from a lack of fruity fermentation aromas. Maltose/maltotriose-negative yeasts offer a highly attractive alternative for creating diversified pleasant aromas and/or eliminating off-flavors in NABLAB production. The aim of this study was to explore the potential of Saccharomyces cerevisiae var. chevalieri, SafBrewTM LA-01 to release fruity polyfunctional thiols from glutathionylated (G-) and cysteinylated (Cys-) precursors. Interestingly, it proved to release free thiols from their glutathionylated S-conjugate much more efficiently (0.34% from G-3-sulfanylhexanol in 15 °P wort after seven days at 24 °C) than the best S. pastorianus strains previously screened (0.13% for lager yeast L7). On the other hand, despite its classification as a S. cerevisiae strain, it showed an inefficient use of cysteinylated precursors, although the release efficiency was slightly higher under NABLAB fermentation conditions (6 °P; 3 days at 20 °C). Under these conditions, as expected, LA-01 consumed only glucose, fructose, and saccharose (0.4% v/v ethanol formation) and produced only low levels of fermentation esters (1.6 mg/L in total) and dimethylsulfide (5 µg/L). The POF+ character of LA-01 also brought significant levels of 4-vinylguaiacol (810 μg/L), which could give to NABLABs the flavors of a white beer.\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"14 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10060276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10060276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unexpected Behavior of a Maltose-Negative Saccharomyces cerevisiae Yeast: Higher Release of Polyfunctional Thiols from Glutathionylated Than from Cysteinylated S-Conjugates
At present, non-alcoholic and low-alcoholic beers (NABLABs), in addition to their premature sensitivity to oxidation, still suffer from a lack of fruity fermentation aromas. Maltose/maltotriose-negative yeasts offer a highly attractive alternative for creating diversified pleasant aromas and/or eliminating off-flavors in NABLAB production. The aim of this study was to explore the potential of Saccharomyces cerevisiae var. chevalieri, SafBrewTM LA-01 to release fruity polyfunctional thiols from glutathionylated (G-) and cysteinylated (Cys-) precursors. Interestingly, it proved to release free thiols from their glutathionylated S-conjugate much more efficiently (0.34% from G-3-sulfanylhexanol in 15 °P wort after seven days at 24 °C) than the best S. pastorianus strains previously screened (0.13% for lager yeast L7). On the other hand, despite its classification as a S. cerevisiae strain, it showed an inefficient use of cysteinylated precursors, although the release efficiency was slightly higher under NABLAB fermentation conditions (6 °P; 3 days at 20 °C). Under these conditions, as expected, LA-01 consumed only glucose, fructose, and saccharose (0.4% v/v ethanol formation) and produced only low levels of fermentation esters (1.6 mg/L in total) and dimethylsulfide (5 µg/L). The POF+ character of LA-01 also brought significant levels of 4-vinylguaiacol (810 μg/L), which could give to NABLABs the flavors of a white beer.