并网光伏系统的规模与调度协同优化

Soheil Mohseni, Alan Brent
{"title":"并网光伏系统的规模与调度协同优化","authors":"Soheil Mohseni, Alan Brent","doi":"10.52825/agripv.v2i.977","DOIUrl":null,"url":null,"abstract":"Agrivoltaic systems that leverage the opportunity of integrating solar photovoltaic (PV) systems into land used for agriculture, have been shown to provide an effective platform for a mutually beneficial cooperation between energy and food. However, the mainstream literature has failed to investigate the systematic design and dispatch considerations that must be made to ensure the robust and profit-maximising operation of a grid-connected agrivoltaic system from an energy perspective subject to meeting onsite load demands, such as irrigation pumps, centre pivot systems, and cow shed pumps. This necessitates formulating a coordinated, system-level strategic design and dispatch problem that considers the localised energy system and its individual components. Accordingly, this paper introduces a novel agrivoltaic system energy planning optimisation method with an integrated dispatch scheduling framework. The proposed method enables the consideration of augmenting value streams, such as temporal energy arbitrage with the grid, especially regarding the presence of behind-the-meter stationary battery storage devices and electric agricultural vehicles’ batteries. Furthermore, the proposed method has a general crop type-independent structure. This allows for greater adaptability of the method to different types of agrivoltaic systems. The effectiveness of the proposed method in improving the economic feasibility of grid-connected agrivoltaic systems is demonstrated based on simulation results obtained from its application to a conceptual agrivoltaic system backed by stationary and mobile battery storage systems, proposed for implementation in a rural location in Aotearoa New Zealand.","PeriodicalId":517222,"journal":{"name":"AgriVoltaics Conference Proceedings","volume":"24 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size and Dispatch Co-Optimisation of a Grid-Connected Agrivoltaic System\",\"authors\":\"Soheil Mohseni, Alan Brent\",\"doi\":\"10.52825/agripv.v2i.977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agrivoltaic systems that leverage the opportunity of integrating solar photovoltaic (PV) systems into land used for agriculture, have been shown to provide an effective platform for a mutually beneficial cooperation between energy and food. However, the mainstream literature has failed to investigate the systematic design and dispatch considerations that must be made to ensure the robust and profit-maximising operation of a grid-connected agrivoltaic system from an energy perspective subject to meeting onsite load demands, such as irrigation pumps, centre pivot systems, and cow shed pumps. This necessitates formulating a coordinated, system-level strategic design and dispatch problem that considers the localised energy system and its individual components. Accordingly, this paper introduces a novel agrivoltaic system energy planning optimisation method with an integrated dispatch scheduling framework. The proposed method enables the consideration of augmenting value streams, such as temporal energy arbitrage with the grid, especially regarding the presence of behind-the-meter stationary battery storage devices and electric agricultural vehicles’ batteries. Furthermore, the proposed method has a general crop type-independent structure. This allows for greater adaptability of the method to different types of agrivoltaic systems. The effectiveness of the proposed method in improving the economic feasibility of grid-connected agrivoltaic systems is demonstrated based on simulation results obtained from its application to a conceptual agrivoltaic system backed by stationary and mobile battery storage systems, proposed for implementation in a rural location in Aotearoa New Zealand.\",\"PeriodicalId\":517222,\"journal\":{\"name\":\"AgriVoltaics Conference Proceedings\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriVoltaics Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/agripv.v2i.977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriVoltaics Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/agripv.v2i.977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

农业光伏系统利用太阳能光伏(PV)系统与农业用地相结合的机会,为能源与粮食之间的互利合作提供了一个有效的平台。然而,主流文献并未对系统设计和调度方面的考虑因素进行研究,而这些因素必须从能源角度出发,确保并网农业光伏系统的稳健运行和利润最大化,并满足灌溉水泵、中心枢轴系统和牛棚水泵等现场负载需求。这就需要制定一个协调的、系统级的战略设计和调度问题,其中要考虑到本地化能源系统及其各个组成部分。因此,本文介绍了一种具有综合调度安排框架的新型农业光伏系统能源规划优化方法。所提出的方法能够考虑增加的价值流,如与电网的时间能量套利,特别是在存在电表后固定电池存储设备和电动农用车电池的情况下。此外,所提出的方法具有与作物类型无关的一般结构。这使得该方法能够更好地适应不同类型的农业光伏系统。建议的方法在提高并网农业光伏系统经济可行性方面的有效性,是基于其应用于一个概念性农业光伏系统的模拟结果,该系统由固定式和移动式电池存储系统支持,建议在新西兰奥特亚罗瓦的一个农村地区实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Size and Dispatch Co-Optimisation of a Grid-Connected Agrivoltaic System
Agrivoltaic systems that leverage the opportunity of integrating solar photovoltaic (PV) systems into land used for agriculture, have been shown to provide an effective platform for a mutually beneficial cooperation between energy and food. However, the mainstream literature has failed to investigate the systematic design and dispatch considerations that must be made to ensure the robust and profit-maximising operation of a grid-connected agrivoltaic system from an energy perspective subject to meeting onsite load demands, such as irrigation pumps, centre pivot systems, and cow shed pumps. This necessitates formulating a coordinated, system-level strategic design and dispatch problem that considers the localised energy system and its individual components. Accordingly, this paper introduces a novel agrivoltaic system energy planning optimisation method with an integrated dispatch scheduling framework. The proposed method enables the consideration of augmenting value streams, such as temporal energy arbitrage with the grid, especially regarding the presence of behind-the-meter stationary battery storage devices and electric agricultural vehicles’ batteries. Furthermore, the proposed method has a general crop type-independent structure. This allows for greater adaptability of the method to different types of agrivoltaic systems. The effectiveness of the proposed method in improving the economic feasibility of grid-connected agrivoltaic systems is demonstrated based on simulation results obtained from its application to a conceptual agrivoltaic system backed by stationary and mobile battery storage systems, proposed for implementation in a rural location in Aotearoa New Zealand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of Light Interception by Crops under Solar Panels using PARbars Agrivoltaics in Germany - Status Quo and Future Developments Vertical Agrivoltaics System on Arable Crops in Central France: Feedback of the First Year of Operation New Legal Framework of Agrivoltaics in Germany Modelling Light Interception by Rows of Tall-Growing Crops in an Agri-PV System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1