带四轮转向的分布式驱动车辆稳定性控制研究

IF 2.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC World Electric Vehicle Journal Pub Date : 2024-05-23 DOI:10.3390/wevj15060228
Jiahao Zhang, Chengye Liu, Jingbo Zhao, Haimei Liu
{"title":"带四轮转向的分布式驱动车辆稳定性控制研究","authors":"Jiahao Zhang, Chengye Liu, Jingbo Zhao, Haimei Liu","doi":"10.3390/wevj15060228","DOIUrl":null,"url":null,"abstract":"The four-wheel steering distributed drive vehicle is a novel type of vehicle with independent control over the four-wheel angle and wheel torque. A method for jointly controlling the distribution of the wheel angle and torque is proposed based on this characteristic. Firstly, the two-degrees-of-freedom model and ideal reference model of four-wheel steering vehicle are established; then, the four-wheel steering controller and torque distribution controller are designed. The rear wheel angle is controlled by the feedforward controller and the feedback controller. The feedforward controller takes the side slip angle of the center of mass as the control target, and the feedback controller takes the yaw angle as the control target. Torque is controlled by two control layers, the additional yaw moment of the upper layer is calculated by the vehicle motion state and fuzzy control theory, and the lower layer distributes wheel torque through the road adhesion coefficient and wheel load. Finally, a simulation platform is established to verify the effectiveness of the proposed control algorithm.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Stability Control of Distributed Drive Vehicle with Four-Wheel Steering\",\"authors\":\"Jiahao Zhang, Chengye Liu, Jingbo Zhao, Haimei Liu\",\"doi\":\"10.3390/wevj15060228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The four-wheel steering distributed drive vehicle is a novel type of vehicle with independent control over the four-wheel angle and wheel torque. A method for jointly controlling the distribution of the wheel angle and torque is proposed based on this characteristic. Firstly, the two-degrees-of-freedom model and ideal reference model of four-wheel steering vehicle are established; then, the four-wheel steering controller and torque distribution controller are designed. The rear wheel angle is controlled by the feedforward controller and the feedback controller. The feedforward controller takes the side slip angle of the center of mass as the control target, and the feedback controller takes the yaw angle as the control target. Torque is controlled by two control layers, the additional yaw moment of the upper layer is calculated by the vehicle motion state and fuzzy control theory, and the lower layer distributes wheel torque through the road adhesion coefficient and wheel load. Finally, a simulation platform is established to verify the effectiveness of the proposed control algorithm.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj15060228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj15060228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

四轮转向分布式驱动汽车是一种可独立控制四轮角度和车轮扭矩的新型汽车。根据这一特点,提出了一种联合控制车轮角度和扭矩分布的方法。首先建立了四轮转向汽车的二自由度模型和理想参考模型,然后设计了四轮转向控制器和扭矩分配控制器。后轮角度由前馈控制器和反馈控制器控制。前馈控制器以质心侧滑角为控制目标,反馈控制器以偏航角为控制目标。扭矩由两个控制层控制,上层的附加偏航力矩由车辆运动状态和模糊控制理论计算得出,下层通过路面附着系数和车轮载荷分配车轮扭矩。最后,建立了一个仿真平台来验证所提控制算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Stability Control of Distributed Drive Vehicle with Four-Wheel Steering
The four-wheel steering distributed drive vehicle is a novel type of vehicle with independent control over the four-wheel angle and wheel torque. A method for jointly controlling the distribution of the wheel angle and torque is proposed based on this characteristic. Firstly, the two-degrees-of-freedom model and ideal reference model of four-wheel steering vehicle are established; then, the four-wheel steering controller and torque distribution controller are designed. The rear wheel angle is controlled by the feedforward controller and the feedback controller. The feedforward controller takes the side slip angle of the center of mass as the control target, and the feedback controller takes the yaw angle as the control target. Torque is controlled by two control layers, the additional yaw moment of the upper layer is calculated by the vehicle motion state and fuzzy control theory, and the lower layer distributes wheel torque through the road adhesion coefficient and wheel load. Finally, a simulation platform is established to verify the effectiveness of the proposed control algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Electric Vehicle Journal
World Electric Vehicle Journal Engineering-Automotive Engineering
CiteScore
4.50
自引率
8.70%
发文量
196
审稿时长
8 weeks
期刊最新文献
Vibration Performance Analysis of a Yokeless Stator Axial Flux PM Motor with Distributed Winding for Electric Vehicle Application Investment Decision-Making to Select Converted Electric Motorcycle Tests in Indonesia Research on the Driving Behavior and Decision-Making of Autonomous Vehicles (AVs) in Mixed Traffic Flow by Integrating Bilayer-GRU-Att and GWO-XGBoost Models A Comprehensive Analysis of Supercapacitors and Their Equivalent Circuits—A Review Anti-Rollover Trajectory Planning Method for Heavy Vehicles in Human–Machine Cooperative Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1