电动汽车的多输入多输出横向动力学控制

Michele Asperti, Divy Dhingra, M. Vignati, E. Sabbioni
{"title":"电动汽车的多输入多输出横向动力学控制","authors":"Michele Asperti, Divy Dhingra, M. Vignati, E. Sabbioni","doi":"10.1177/09544070241252197","DOIUrl":null,"url":null,"abstract":"Full electric vehicles with multiple and independently controlled powertrains allow for an improvement of vehicle handling capabilities both in steady state and in transient manoeuvres. This paper focuses on active lateral dynamics control of an electric vehicle equipped with 4 in-wheel motors and active rear steering. An integral terminal sliding mode controller (ITSMC) is derived starting from the linearized single track model with the addition of the rear wheel steering angle. The controller has a multi-input multi-output structure and is designed to track vehicle yaw rate and sideslip angle reference quantities through torque vectoring and active rear steering actuation. A novel approach for calculating reference sideslip angle and yaw rate using a logistic function is also presented in this paper. The ITSMC relies on real time knowledge of sideslip angle which cannot be measured in the real vehicle, thus it is estimated through the addition of an extended Kalman filter to the control loop. The performance of the controller is tested with VI-CarRealTime 14 degrees of freedom nonlinear model both for steady state and transient manoeuvres. Simulation results show a good tracking of the reference value with no chattering issues and with an improved behaviour if compared to a sliding mode controller from literature.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi input multi output lateral dynamics control of an electric vehicle\",\"authors\":\"Michele Asperti, Divy Dhingra, M. Vignati, E. Sabbioni\",\"doi\":\"10.1177/09544070241252197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full electric vehicles with multiple and independently controlled powertrains allow for an improvement of vehicle handling capabilities both in steady state and in transient manoeuvres. This paper focuses on active lateral dynamics control of an electric vehicle equipped with 4 in-wheel motors and active rear steering. An integral terminal sliding mode controller (ITSMC) is derived starting from the linearized single track model with the addition of the rear wheel steering angle. The controller has a multi-input multi-output structure and is designed to track vehicle yaw rate and sideslip angle reference quantities through torque vectoring and active rear steering actuation. A novel approach for calculating reference sideslip angle and yaw rate using a logistic function is also presented in this paper. The ITSMC relies on real time knowledge of sideslip angle which cannot be measured in the real vehicle, thus it is estimated through the addition of an extended Kalman filter to the control loop. The performance of the controller is tested with VI-CarRealTime 14 degrees of freedom nonlinear model both for steady state and transient manoeuvres. Simulation results show a good tracking of the reference value with no chattering issues and with an improved behaviour if compared to a sliding mode controller from literature.\",\"PeriodicalId\":509770,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241252197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544070241252197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全电动汽车配备多个独立控制的动力系统,可提高车辆在稳态和瞬态操纵中的操控能力。本文重点研究配备 4 个轮内电机和主动后转向系统的电动汽车的主动横向动力学控制。从线性化单轨模型出发,加上后轮转向角,推导出一种积分终端滑动模式控制器(ITSMC)。该控制器采用多输入多输出结构,旨在通过扭矩矢量和主动后转向驱动来跟踪车辆偏航率和侧滑角参考量。本文还介绍了一种利用对数函数计算参考侧滑角和偏航率的新方法。ITSMC 依赖于侧倾角的实时知识,而侧倾角在实际车辆中无法测量,因此通过在控制回路中添加扩展卡尔曼滤波器来估算侧倾角。控制器的性能通过 VI-CarRealTime 14 自由度非线性模型进行了稳态和瞬态机动测试。仿真结果表明,与文献中的滑模控制器相比,该控制器能很好地跟踪参考值,没有颤振问题,性能也有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi input multi output lateral dynamics control of an electric vehicle
Full electric vehicles with multiple and independently controlled powertrains allow for an improvement of vehicle handling capabilities both in steady state and in transient manoeuvres. This paper focuses on active lateral dynamics control of an electric vehicle equipped with 4 in-wheel motors and active rear steering. An integral terminal sliding mode controller (ITSMC) is derived starting from the linearized single track model with the addition of the rear wheel steering angle. The controller has a multi-input multi-output structure and is designed to track vehicle yaw rate and sideslip angle reference quantities through torque vectoring and active rear steering actuation. A novel approach for calculating reference sideslip angle and yaw rate using a logistic function is also presented in this paper. The ITSMC relies on real time knowledge of sideslip angle which cannot be measured in the real vehicle, thus it is estimated through the addition of an extended Kalman filter to the control loop. The performance of the controller is tested with VI-CarRealTime 14 degrees of freedom nonlinear model both for steady state and transient manoeuvres. Simulation results show a good tracking of the reference value with no chattering issues and with an improved behaviour if compared to a sliding mode controller from literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of filler-reinforced carbon fibers on the frictional properties of composite synchronizer rings Long-short-time domain torque optimal prediction and allocation method for electric logistics vehicles with electro-hydraulic composite steering system Autonomous vehicle platoon overtaking at a uniform speed based on improved artificial potential field method Prediction of emission and performance of internal combustion engine via regression deep learning approach Influence of surface activated nanophase Pr6O11 particles on the physio-chemical and tribological characteristics of SAE20W40 automotive lubricant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1