Nicholas R. Jenkins, Xuan Zhou, Mithun Bhowmick, Claire L. McLeod, Mark P. S. Krekeler
{"title":"合成鹅绿泥石在动态冲击压缩后的稳定性研究","authors":"Nicholas R. Jenkins, Xuan Zhou, Mithun Bhowmick, Claire L. McLeod, Mark P. S. Krekeler","doi":"10.1007/s00269-024-01279-4","DOIUrl":null,"url":null,"abstract":"<div><p>Goethite (α-FeOOH) is an iron-oxyhydroxide mineral that is commonly found in soils and is of importance within the context of industrial mineralogy and aqueous geochemistry. The structure of goethite is such that vacant rows of octahedral sites form “channels” or nanopores. This study aims to investigate the response of goethite to dynamic shock compression in order to advance our understanding of minerals as potential shock-absorbing media. Shock compression of synthetic goethite powdered samples was achieved by using an inverted shock microscope and laser driven “flyer plates”. With this setup, a high-energy laser launches small aluminum discs as projectiles or flyer plates at velocities of the order of a few km/s towards the sample. The resulting impact sends a shock wave through the sample, thereby compressing it. The compression is precisely controlled by the plate-impact speed, which in turn is controlled by laser-power. In this work, 25 µm aluminum flyer plates with 3.5 km/s impact velocities were used. The impact resulted in a planar shock wave with shock velocity (U<sub>s</sub>) ~ 6.78 km/s and an estimated pressure of ~ 41.6 GPa. The shock wave compressed the target goethite for 5 ns. Subsequent, post-shock investigations via transmission electron microscopy (TEM) documented that crystal morphology persisted, and that goethite’s “bird’s nest” texture was maintained. Lattice fringe images revealed localized zones of distortion and amorphous regions within single goethite particles. Raman spectra appear to indicate structural changes after shock compression with the shocked goethite spectra matching that of synthetic hematite. X-ray diffraction (XRD) interestingly identified two major phases: goethite and magnetite. Irrespective of the mineral phases present, the goethite particles persist post shock. A thixotropic-like model for accompanying shock compression is proposed to account for goethite’s shock resistant behavior.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation into the stability of synthetic goethite after dynamic shock compression\",\"authors\":\"Nicholas R. Jenkins, Xuan Zhou, Mithun Bhowmick, Claire L. McLeod, Mark P. S. Krekeler\",\"doi\":\"10.1007/s00269-024-01279-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Goethite (α-FeOOH) is an iron-oxyhydroxide mineral that is commonly found in soils and is of importance within the context of industrial mineralogy and aqueous geochemistry. The structure of goethite is such that vacant rows of octahedral sites form “channels” or nanopores. This study aims to investigate the response of goethite to dynamic shock compression in order to advance our understanding of minerals as potential shock-absorbing media. Shock compression of synthetic goethite powdered samples was achieved by using an inverted shock microscope and laser driven “flyer plates”. With this setup, a high-energy laser launches small aluminum discs as projectiles or flyer plates at velocities of the order of a few km/s towards the sample. The resulting impact sends a shock wave through the sample, thereby compressing it. The compression is precisely controlled by the plate-impact speed, which in turn is controlled by laser-power. In this work, 25 µm aluminum flyer plates with 3.5 km/s impact velocities were used. The impact resulted in a planar shock wave with shock velocity (U<sub>s</sub>) ~ 6.78 km/s and an estimated pressure of ~ 41.6 GPa. The shock wave compressed the target goethite for 5 ns. Subsequent, post-shock investigations via transmission electron microscopy (TEM) documented that crystal morphology persisted, and that goethite’s “bird’s nest” texture was maintained. Lattice fringe images revealed localized zones of distortion and amorphous regions within single goethite particles. Raman spectra appear to indicate structural changes after shock compression with the shocked goethite spectra matching that of synthetic hematite. X-ray diffraction (XRD) interestingly identified two major phases: goethite and magnetite. Irrespective of the mineral phases present, the goethite particles persist post shock. A thixotropic-like model for accompanying shock compression is proposed to account for goethite’s shock resistant behavior.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-024-01279-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01279-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation into the stability of synthetic goethite after dynamic shock compression
Goethite (α-FeOOH) is an iron-oxyhydroxide mineral that is commonly found in soils and is of importance within the context of industrial mineralogy and aqueous geochemistry. The structure of goethite is such that vacant rows of octahedral sites form “channels” or nanopores. This study aims to investigate the response of goethite to dynamic shock compression in order to advance our understanding of minerals as potential shock-absorbing media. Shock compression of synthetic goethite powdered samples was achieved by using an inverted shock microscope and laser driven “flyer plates”. With this setup, a high-energy laser launches small aluminum discs as projectiles or flyer plates at velocities of the order of a few km/s towards the sample. The resulting impact sends a shock wave through the sample, thereby compressing it. The compression is precisely controlled by the plate-impact speed, which in turn is controlled by laser-power. In this work, 25 µm aluminum flyer plates with 3.5 km/s impact velocities were used. The impact resulted in a planar shock wave with shock velocity (Us) ~ 6.78 km/s and an estimated pressure of ~ 41.6 GPa. The shock wave compressed the target goethite for 5 ns. Subsequent, post-shock investigations via transmission electron microscopy (TEM) documented that crystal morphology persisted, and that goethite’s “bird’s nest” texture was maintained. Lattice fringe images revealed localized zones of distortion and amorphous regions within single goethite particles. Raman spectra appear to indicate structural changes after shock compression with the shocked goethite spectra matching that of synthetic hematite. X-ray diffraction (XRD) interestingly identified two major phases: goethite and magnetite. Irrespective of the mineral phases present, the goethite particles persist post shock. A thixotropic-like model for accompanying shock compression is proposed to account for goethite’s shock resistant behavior.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)