利用反刍微生物群生产氢气:寻找高产的培养条件

Vianca Maribel Gándara-Arteaga, G. Guatemala-Morales, Álvaro de Jesús Martínez-Gómez, Guillermo Toriz, C. Pelayo-Ortiz, R. Corona-González
{"title":"利用反刍微生物群生产氢气:寻找高产的培养条件","authors":"Vianca Maribel Gándara-Arteaga, G. Guatemala-Morales, Álvaro de Jesús Martínez-Gómez, Guillermo Toriz, C. Pelayo-Ortiz, R. Corona-González","doi":"10.3390/fermentation10060274","DOIUrl":null,"url":null,"abstract":"Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen. Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time, two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment. It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL; the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture conditions for increasing hydrogen production.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"23 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Hydrogen with Ruminal Microbiota: Finding Culture Conditions for High Yields\",\"authors\":\"Vianca Maribel Gándara-Arteaga, G. Guatemala-Morales, Álvaro de Jesús Martínez-Gómez, Guillermo Toriz, C. Pelayo-Ortiz, R. Corona-González\",\"doi\":\"10.3390/fermentation10060274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen. Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time, two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment. It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL; the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture conditions for increasing hydrogen production.\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"23 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10060274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10060274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氢气是替代化石燃料的理想选择,因为氢气燃烧后只产生水。利用木质纤维素进行黑暗发酵(DF)可能是一种具有竞争力的工业制氢工艺。然而,木质纤维素必须经过预处理才能获得可发酵的糖分,这不仅成本高昂,而且会造成污染。来自牛瘤胃的微生物能有效降解木质纤维素。遗憾的是,这些微生物很少被用于制氢。因此,必须对培养条件进行深入研究,以了解牛瘤胃微生物群(MCRB)在制氢过程中的行为。在这项工作中,我们通过改变培养时间、两种培养基(MB 和 Rhodospirillaceae)、顶空(40 毫升和 80 毫升)和热处理,评估了 DF 与 MCRB 的产氢情况。结果发现,在甲基溴中培养 16 小时后,氢的产生量最大。与 40 毫升相比,80 毫升顶空产生的氢气量是 40 毫升的三倍;未经热处理的 MCRB 产生的氢气量更高。32 个 MCRB 的氢气产量变化很大,从 21 毫升到 696 毫升不等。我们的研究结果从不同的角度展示了如何处理 MCRB 以生产氢气,并深入探讨了培养条件对提高氢气产量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of Hydrogen with Ruminal Microbiota: Finding Culture Conditions for High Yields
Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen. Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time, two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment. It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL; the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture conditions for increasing hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Harnessing Fermentation by Bacillus and Lactic Acid Bacteria for Enhanced Texture, Flavor, and Nutritional Value in Plant-Based Matrices Characterization of the Key Aroma Compounds of Soybean Flavor in Fermented Soybeans with Bacillus subtilis BJ3-2 by Gene Knockout, Gas Chromatography–Olfactometry–Mass Spectrometry, and Aroma Addition Experiments Development of Volatile Fatty Acid and Methane Production Prediction Model Using Ruminant Nutrition Comparison of Algorithms Solid-State Fermentation of Quinoa Flour: An In-Depth Analysis of Ingredient Characteristics Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1