Vianca Maribel Gándara-Arteaga, G. Guatemala-Morales, Álvaro de Jesús Martínez-Gómez, Guillermo Toriz, C. Pelayo-Ortiz, R. Corona-González
{"title":"利用反刍微生物群生产氢气:寻找高产的培养条件","authors":"Vianca Maribel Gándara-Arteaga, G. Guatemala-Morales, Álvaro de Jesús Martínez-Gómez, Guillermo Toriz, C. Pelayo-Ortiz, R. Corona-González","doi":"10.3390/fermentation10060274","DOIUrl":null,"url":null,"abstract":"Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen. Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time, two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment. It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL; the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture conditions for increasing hydrogen production.","PeriodicalId":507249,"journal":{"name":"Fermentation","volume":"23 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Hydrogen with Ruminal Microbiota: Finding Culture Conditions for High Yields\",\"authors\":\"Vianca Maribel Gándara-Arteaga, G. Guatemala-Morales, Álvaro de Jesús Martínez-Gómez, Guillermo Toriz, C. Pelayo-Ortiz, R. Corona-González\",\"doi\":\"10.3390/fermentation10060274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen. Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time, two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment. It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL; the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture conditions for increasing hydrogen production.\",\"PeriodicalId\":507249,\"journal\":{\"name\":\"Fermentation\",\"volume\":\"23 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fermentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fermentation10060274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fermentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fermentation10060274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production of Hydrogen with Ruminal Microbiota: Finding Culture Conditions for High Yields
Hydrogen is ideal for replacing fossil fuels because upon combustion it generates only water. Dark fermentation (DF) from lignocellulose might be a competitive process for hydrogen production at the industrial scale. However, lignocellulose must be pretreated to obtain fermentable sugars, which is costly and creates pollution. Microorganisms from bovine rumen efficiently degrade lignocellulose. Unfortunately, they have scarcely been explored for the production of hydrogen. Therefore, deeper studies on the culture conditions have to be undertaken to understand the behavior of microbial consortia from the rumen of bovines (MCRB) during hydrogen production. In this work, we evaluated the production of hydrogen by DF with MCRB by varying the incubation time, two culture media (MB and Rhodospirillaceae), headspace (40 and 80 mL), and thermal treatment. It was found that the production of hydrogen was maximum at 16 h MCRB incubation in MB. An amount of 80 mL headspace resulted in a threefold production of hydrogen as compared to 40 mL; the MCRB without heat treatment had a higher H2 yield. The production of hydrogen with 32 MCRB was highly variable, ranging between 21 and 696 mL. Our findings show a different perspective on the treatment of MCRB for the production of hydrogen and give insights on the impact of the culture conditions for increasing hydrogen production.