{"title":"菱铁矿的导电性和铁的自旋转变的影响","authors":"Izumi Mashino, Takashi Yoshino, Takaya Mitsui, Kosuke Fujiwara, Máté Garai, Shigeru Yamashita","doi":"10.1007/s00269-024-01283-8","DOIUrl":null,"url":null,"abstract":"<div><p>We have conducted electrical conductivity measurements of FeCO<sub>3</sub> siderite under high pressure up to 63 GPa in order to understand the nature and effect of iron spin transition and its influence on the geophysical properties of siderite, which is an end-member of major carbonate minerals. The results from Raman and Mössbauer spectroscopic measurements show that the high- to low-spin transition of iron occurs at around 50 GPa in agreement with previous studies. A sharp decrease of the electrical conductivity was also observed at around 50 GP, which is associated with the spin transition in iron. Although the stability of FeCO<sub>3</sub> siderite may be limited under high-temperature conditions along with the mantle geotherm, solid solutions in the MgCO<sub>3</sub>-FeCO<sub>3</sub> system, Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub>, could be stable up to the pressure-temperature condition of the lowermost mantle. The pressure-temperature range of the spin transition in Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub> is narrower than those of the major lower mantle minerals, ferropericlase and bridgmanite, and thus the drop of the electrical conductivity induced by the spin transition could be clearer under lower mantle conditions. Therefore, the existence of Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub> may affect the observed heterogeneity of electrical conductivity in the mid-lower mantle.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"51 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-024-01283-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Electrical conductivity of siderite and the effect of the spin transition of iron\",\"authors\":\"Izumi Mashino, Takashi Yoshino, Takaya Mitsui, Kosuke Fujiwara, Máté Garai, Shigeru Yamashita\",\"doi\":\"10.1007/s00269-024-01283-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have conducted electrical conductivity measurements of FeCO<sub>3</sub> siderite under high pressure up to 63 GPa in order to understand the nature and effect of iron spin transition and its influence on the geophysical properties of siderite, which is an end-member of major carbonate minerals. The results from Raman and Mössbauer spectroscopic measurements show that the high- to low-spin transition of iron occurs at around 50 GPa in agreement with previous studies. A sharp decrease of the electrical conductivity was also observed at around 50 GP, which is associated with the spin transition in iron. Although the stability of FeCO<sub>3</sub> siderite may be limited under high-temperature conditions along with the mantle geotherm, solid solutions in the MgCO<sub>3</sub>-FeCO<sub>3</sub> system, Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub>, could be stable up to the pressure-temperature condition of the lowermost mantle. The pressure-temperature range of the spin transition in Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub> is narrower than those of the major lower mantle minerals, ferropericlase and bridgmanite, and thus the drop of the electrical conductivity induced by the spin transition could be clearer under lower mantle conditions. Therefore, the existence of Mg<sub>1-x</sub>Fe<sub>x</sub>CO<sub>3</sub> may affect the observed heterogeneity of electrical conductivity in the mid-lower mantle.</p></div>\",\"PeriodicalId\":20132,\"journal\":{\"name\":\"Physics and Chemistry of Minerals\",\"volume\":\"51 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00269-024-01283-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00269-024-01283-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-024-01283-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrical conductivity of siderite and the effect of the spin transition of iron
We have conducted electrical conductivity measurements of FeCO3 siderite under high pressure up to 63 GPa in order to understand the nature and effect of iron spin transition and its influence on the geophysical properties of siderite, which is an end-member of major carbonate minerals. The results from Raman and Mössbauer spectroscopic measurements show that the high- to low-spin transition of iron occurs at around 50 GPa in agreement with previous studies. A sharp decrease of the electrical conductivity was also observed at around 50 GP, which is associated with the spin transition in iron. Although the stability of FeCO3 siderite may be limited under high-temperature conditions along with the mantle geotherm, solid solutions in the MgCO3-FeCO3 system, Mg1-xFexCO3, could be stable up to the pressure-temperature condition of the lowermost mantle. The pressure-temperature range of the spin transition in Mg1-xFexCO3 is narrower than those of the major lower mantle minerals, ferropericlase and bridgmanite, and thus the drop of the electrical conductivity induced by the spin transition could be clearer under lower mantle conditions. Therefore, the existence of Mg1-xFexCO3 may affect the observed heterogeneity of electrical conductivity in the mid-lower mantle.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)