利用动态农业光伏系统保护果树花朵免受霜冻影响

Gerardo Lopez, Perrine Juillion, Vincent Hitte, Yassin Elamri, Yannick Montrognon, Jérôme Chopard, Séverine Persello, Damien Fumey
{"title":"利用动态农业光伏系统保护果树花朵免受霜冻影响","authors":"Gerardo Lopez, Perrine Juillion, Vincent Hitte, Yassin Elamri, Yannick Montrognon, Jérôme Chopard, Séverine Persello, Damien Fumey","doi":"10.52825/agripv.v2i.1002","DOIUrl":null,"url":null,"abstract":"Spring frost is a risk for fruit tree production. In this study, a dynamic agrivoltaic system (AV) was tested as a solution to protect trees from frosts. The study was done in a nectarine AV in France in 2022 and 2023. The AV plot was paired with an adjacent control plot without panels. Air temperature nearby the trees was measured continuously with thermo-hygrometers each year. In 2022 and 2023 frost sensors to mimic organ temperature were also used. In 2023, bud temperatures were continuously measured during bloom. Frosts during bloom were observed in 2022 and 2023 but only the 2022 frost was associated with flower damage. Solar panels were positioned in horizontal position during the nights with frost. Night air temperature nearby the AV trees was warmer in comparison with control trees (increases between 0.27 and 0.47 °C). An increase between 0.25-1.29 °C was also observed for frost sensors and between 1.61-1.69 °C for the flower buds. Phenology was similar between control and AV trees. In 2002, 35% of control flowers were injured during frost while less than 10% were injured in the AV. We conclude that agrivoltaics can be used to protect flowers from frost.","PeriodicalId":517222,"journal":{"name":"AgriVoltaics Conference Proceedings","volume":"19 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protecting Flowers of Fruit Trees From Frost With Dynamic Agrivoltaic Systems\",\"authors\":\"Gerardo Lopez, Perrine Juillion, Vincent Hitte, Yassin Elamri, Yannick Montrognon, Jérôme Chopard, Séverine Persello, Damien Fumey\",\"doi\":\"10.52825/agripv.v2i.1002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spring frost is a risk for fruit tree production. In this study, a dynamic agrivoltaic system (AV) was tested as a solution to protect trees from frosts. The study was done in a nectarine AV in France in 2022 and 2023. The AV plot was paired with an adjacent control plot without panels. Air temperature nearby the trees was measured continuously with thermo-hygrometers each year. In 2022 and 2023 frost sensors to mimic organ temperature were also used. In 2023, bud temperatures were continuously measured during bloom. Frosts during bloom were observed in 2022 and 2023 but only the 2022 frost was associated with flower damage. Solar panels were positioned in horizontal position during the nights with frost. Night air temperature nearby the AV trees was warmer in comparison with control trees (increases between 0.27 and 0.47 °C). An increase between 0.25-1.29 °C was also observed for frost sensors and between 1.61-1.69 °C for the flower buds. Phenology was similar between control and AV trees. In 2002, 35% of control flowers were injured during frost while less than 10% were injured in the AV. We conclude that agrivoltaics can be used to protect flowers from frost.\",\"PeriodicalId\":517222,\"journal\":{\"name\":\"AgriVoltaics Conference Proceedings\",\"volume\":\"19 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriVoltaics Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52825/agripv.v2i.1002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriVoltaics Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52825/agripv.v2i.1002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

春季霜冻是果树生产的一个风险。本研究测试了一种动态农业光伏系统(AV),作为保护果树免受霜冻的解决方案。研究于 2022 年和 2023 年在法国的一个油桃 AV 地块进行。AV 小区与相邻的无电池板对照小区配对。每年都用温湿度计连续测量树木附近的空气温度。2022 年和 2023 年还使用了霜冻传感器来模拟器官温度。2023 年,在开花期间连续测量花蕾温度。2022 年和 2023 年都观察到了花期霜冻,但只有 2022 年的霜冻与花朵受损有关。在有霜冻的夜晚,太阳能电池板被置于水平位置。与对照树木相比,反车辆树木附近的夜间气温较高(上升 0.27 至 0.47 °C)。霜冻传感器的温度也升高了 0.25-1.29 °C,花蕾的温度升高了 1.61-1.69 °C。对照树和反车辆树的物候期相似。2002 年,35% 的对照组花朵在霜冻期间受伤,而反车辆花朵受伤的比例不到 10%。我们的结论是,农业光伏技术可用于保护花卉免受霜冻。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protecting Flowers of Fruit Trees From Frost With Dynamic Agrivoltaic Systems
Spring frost is a risk for fruit tree production. In this study, a dynamic agrivoltaic system (AV) was tested as a solution to protect trees from frosts. The study was done in a nectarine AV in France in 2022 and 2023. The AV plot was paired with an adjacent control plot without panels. Air temperature nearby the trees was measured continuously with thermo-hygrometers each year. In 2022 and 2023 frost sensors to mimic organ temperature were also used. In 2023, bud temperatures were continuously measured during bloom. Frosts during bloom were observed in 2022 and 2023 but only the 2022 frost was associated with flower damage. Solar panels were positioned in horizontal position during the nights with frost. Night air temperature nearby the AV trees was warmer in comparison with control trees (increases between 0.27 and 0.47 °C). An increase between 0.25-1.29 °C was also observed for frost sensors and between 1.61-1.69 °C for the flower buds. Phenology was similar between control and AV trees. In 2002, 35% of control flowers were injured during frost while less than 10% were injured in the AV. We conclude that agrivoltaics can be used to protect flowers from frost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of Light Interception by Crops under Solar Panels using PARbars Agrivoltaics in Germany - Status Quo and Future Developments Vertical Agrivoltaics System on Arable Crops in Central France: Feedback of the First Year of Operation New Legal Framework of Agrivoltaics in Germany Modelling Light Interception by Rows of Tall-Growing Crops in an Agri-PV System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1