S. Tripathi, Sarfraz Hussain, Raj Kumar, Sourabh Sahu
{"title":"使用 CNTFET 的数字可调跨导放大器 (DTTA) 的设计与分析","authors":"S. Tripathi, Sarfraz Hussain, Raj Kumar, Sourabh Sahu","doi":"10.1155/2024/2003437","DOIUrl":null,"url":null,"abstract":"Carbon nanotube-FETs (CNTFETs) have become a potential challenger because of their exceptional electrical properties and compatibility with conventional CMOS technology. The design and study of digitally tunable transconductance amplifiers (DTTAs) using CNTFETs are the main topics of this work. By utilizing the special characteristics of CNTFETs, the suggested DTTA design makes transconductance tunable, providing a versatile method of adjusting amplifier settings without requiring modifications to the hardware architecture. This study provides a complete description of the CNTFET modeling techniques utilized for realistic circuit simulations, along with a detailed analysis of the DTTA based on CNTFETs. The circuit is implemented using a 32 nm CNTFET model and verified results with HSPICE.","PeriodicalId":22985,"journal":{"name":"The Scientific World Journal","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Digitally Tunable Transconductance Amplifier (DTTA) Using CNTFETs\",\"authors\":\"S. Tripathi, Sarfraz Hussain, Raj Kumar, Sourabh Sahu\",\"doi\":\"10.1155/2024/2003437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon nanotube-FETs (CNTFETs) have become a potential challenger because of their exceptional electrical properties and compatibility with conventional CMOS technology. The design and study of digitally tunable transconductance amplifiers (DTTAs) using CNTFETs are the main topics of this work. By utilizing the special characteristics of CNTFETs, the suggested DTTA design makes transconductance tunable, providing a versatile method of adjusting amplifier settings without requiring modifications to the hardware architecture. This study provides a complete description of the CNTFET modeling techniques utilized for realistic circuit simulations, along with a detailed analysis of the DTTA based on CNTFETs. The circuit is implemented using a 32 nm CNTFET model and verified results with HSPICE.\",\"PeriodicalId\":22985,\"journal\":{\"name\":\"The Scientific World Journal\",\"volume\":\"1 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Scientific World Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2003437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Scientific World Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/2003437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Design and Analysis of Digitally Tunable Transconductance Amplifier (DTTA) Using CNTFETs
Carbon nanotube-FETs (CNTFETs) have become a potential challenger because of their exceptional electrical properties and compatibility with conventional CMOS technology. The design and study of digitally tunable transconductance amplifiers (DTTAs) using CNTFETs are the main topics of this work. By utilizing the special characteristics of CNTFETs, the suggested DTTA design makes transconductance tunable, providing a versatile method of adjusting amplifier settings without requiring modifications to the hardware architecture. This study provides a complete description of the CNTFET modeling techniques utilized for realistic circuit simulations, along with a detailed analysis of the DTTA based on CNTFETs. The circuit is implemented using a 32 nm CNTFET model and verified results with HSPICE.
期刊介绍:
The Scientific World Journal is a peer-reviewed, Open Access journal that publishes original research, reviews, and clinical studies covering a wide range of subjects in science, technology, and medicine. The journal is divided into 81 subject areas.