{"title":"基于 RUSLE 模型和谷歌地球引擎的若拉雅河流域水土流失时空动态图","authors":"S. Aldiansyah, Farida Wardani","doi":"10.2166/hydro.2024.219","DOIUrl":null,"url":null,"abstract":"\n \n The Roraya River Basin is an important water conservation area in Sulawesi. The soil erosion status in this study was investigated using Revised Universal Soil Loss Equation (RUSLE) on Google Earth Engine (GEE). Soil erosion modulus, a characteristic of the spatiotemporal variation of soil erosion intensity, is calculated and analyzed from various multi-source data. The research results show that (1) the average soil erosion modulus in the Roraya River Basin in 2001–2021 was 307.22 t · h−1 · year−1. This shows that around 25% of the Roraya River Basin requires soil protection measures as the region faces a significant risk of erosion; (2) the trend in the range of soil erosion in the Roraya River Basin in 2001–2021 tends to vary, initially stable, then decreases and increases significantly with increasing altitude and slope (western plateau). A striking trend occurs in various classes of vegetation cover and rainfall erosivity where the increase in soil erosion is caused by both and this applies in reverse, thus encouraging the dynamic development of soil erosion: (3) RUSLE model integrated into GEE can handle vegetation cover factors and conservation measure factors. This is a reliable soil erosion monitoring tool on a wide scale.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamic of soil erosion in the Roraya River Basin based on RUSLE model and Google Earth Engine\",\"authors\":\"S. Aldiansyah, Farida Wardani\",\"doi\":\"10.2166/hydro.2024.219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n The Roraya River Basin is an important water conservation area in Sulawesi. The soil erosion status in this study was investigated using Revised Universal Soil Loss Equation (RUSLE) on Google Earth Engine (GEE). Soil erosion modulus, a characteristic of the spatiotemporal variation of soil erosion intensity, is calculated and analyzed from various multi-source data. The research results show that (1) the average soil erosion modulus in the Roraya River Basin in 2001–2021 was 307.22 t · h−1 · year−1. This shows that around 25% of the Roraya River Basin requires soil protection measures as the region faces a significant risk of erosion; (2) the trend in the range of soil erosion in the Roraya River Basin in 2001–2021 tends to vary, initially stable, then decreases and increases significantly with increasing altitude and slope (western plateau). A striking trend occurs in various classes of vegetation cover and rainfall erosivity where the increase in soil erosion is caused by both and this applies in reverse, thus encouraging the dynamic development of soil erosion: (3) RUSLE model integrated into GEE can handle vegetation cover factors and conservation measure factors. This is a reliable soil erosion monitoring tool on a wide scale.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2024.219\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2024.219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Spatiotemporal dynamic of soil erosion in the Roraya River Basin based on RUSLE model and Google Earth Engine
The Roraya River Basin is an important water conservation area in Sulawesi. The soil erosion status in this study was investigated using Revised Universal Soil Loss Equation (RUSLE) on Google Earth Engine (GEE). Soil erosion modulus, a characteristic of the spatiotemporal variation of soil erosion intensity, is calculated and analyzed from various multi-source data. The research results show that (1) the average soil erosion modulus in the Roraya River Basin in 2001–2021 was 307.22 t · h−1 · year−1. This shows that around 25% of the Roraya River Basin requires soil protection measures as the region faces a significant risk of erosion; (2) the trend in the range of soil erosion in the Roraya River Basin in 2001–2021 tends to vary, initially stable, then decreases and increases significantly with increasing altitude and slope (western plateau). A striking trend occurs in various classes of vegetation cover and rainfall erosivity where the increase in soil erosion is caused by both and this applies in reverse, thus encouraging the dynamic development of soil erosion: (3) RUSLE model integrated into GEE can handle vegetation cover factors and conservation measure factors. This is a reliable soil erosion monitoring tool on a wide scale.
期刊介绍:
Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.