Ba1-xKxFe2As2 磁带临界电流的低场异常

N. Strickland, Shen V Chong, Chiheng Dong, Xianping Zhang, Yanwei Ma, Zhenan Jiang
{"title":"Ba1-xKxFe2As2 磁带临界电流的低场异常","authors":"N. Strickland, Shen V Chong, Chiheng Dong, Xianping Zhang, Yanwei Ma, Zhenan Jiang","doi":"10.1088/1361-6668/ad4f5d","DOIUrl":null,"url":null,"abstract":"\n Ba1-xKxFe2As2 superconductors have strong potential for magnet applications through their very high upper critical field, relatively high superconducting transition temperature and manufacturability through the powder-in-tube (PIT) route. However, the critical current density in PIT tapes is still low compared to the incumbent technologies, so a greater understanding of the limiting factors is required. We have measured in-field critical currents (Ic) of stainless steel and silver double-sheathed monofilament Ba0.6K0.4Fe2As2 superconductor tapes at elevated temperatures from 15 K to 35 K. At 20 K the critical current density is up to 140 kA/cm2 in low (optimal) field and 22 kA/cm2 in 8 T. In the low-field region we observe an anomalous and sharp suppression of Ic centred at zero field. This feature is non-hysteretic for lower temperatures and perpendicular field, but becomes hysteretic for higher temperatures in perpendicular field and all temperatures in parallel field. The low-field suppression is reflected also in the n-values which can otherwise be very high, in excess of 100, in optimal field. Magnetic-field hysteresis of Ic is generally attributed to flux exclusion / flux trapping in granular superconductors and this is likely to be the case also in the present conductors. The low-field Ic anomaly also likely has its origin in the planar granularity, while magnetic phases in grains or grain boundaries may also play a role.","PeriodicalId":21985,"journal":{"name":"Superconductor Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low field anomaly in the critical current of Ba1‑xKxFe2As2 tapes\",\"authors\":\"N. Strickland, Shen V Chong, Chiheng Dong, Xianping Zhang, Yanwei Ma, Zhenan Jiang\",\"doi\":\"10.1088/1361-6668/ad4f5d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ba1-xKxFe2As2 superconductors have strong potential for magnet applications through their very high upper critical field, relatively high superconducting transition temperature and manufacturability through the powder-in-tube (PIT) route. However, the critical current density in PIT tapes is still low compared to the incumbent technologies, so a greater understanding of the limiting factors is required. We have measured in-field critical currents (Ic) of stainless steel and silver double-sheathed monofilament Ba0.6K0.4Fe2As2 superconductor tapes at elevated temperatures from 15 K to 35 K. At 20 K the critical current density is up to 140 kA/cm2 in low (optimal) field and 22 kA/cm2 in 8 T. In the low-field region we observe an anomalous and sharp suppression of Ic centred at zero field. This feature is non-hysteretic for lower temperatures and perpendicular field, but becomes hysteretic for higher temperatures in perpendicular field and all temperatures in parallel field. The low-field suppression is reflected also in the n-values which can otherwise be very high, in excess of 100, in optimal field. Magnetic-field hysteresis of Ic is generally attributed to flux exclusion / flux trapping in granular superconductors and this is likely to be the case also in the present conductors. The low-field Ic anomaly also likely has its origin in the planar granularity, while magnetic phases in grains or grain boundaries may also play a role.\",\"PeriodicalId\":21985,\"journal\":{\"name\":\"Superconductor Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/ad4f5d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6668/ad4f5d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Ba1-xKxFe2As2 超导具有很高的上临界磁场、相对较高的超导转变温度以及通过管内粉末(PIT)工艺制造的可制造性,因此在磁体应用方面具有很强的潜力。然而,与现有技术相比,PIT 磁带的临界电流密度仍然较低,因此需要进一步了解其限制因素。我们测量了不锈钢和银双鞘单丝 Ba0.6K0.4Fe2As2 超导带在 15 K 至 35 K 高温下的场内临界电流 (Ic)。在 20 K 时,临界电流密度在低(最佳)磁场下高达 140 kA/cm2,在 8 T 时为 22 kA/cm2。这一特征在较低温度和垂直磁场下是非滞后的,但在温度较高的垂直磁场和所有温度的平行磁场下则变得滞后。低磁场抑制也反映在 n 值上,否则在最佳磁场中,n 值会非常高,超过 100。Ic 的磁场滞后通常归因于颗粒状超导体中的磁通排斥/磁通捕获,而目前的导体很可能也是这种情况。低磁场 Ic 异常也可能源于平面粒度,而晶粒或晶粒边界中的磁相也可能起作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low field anomaly in the critical current of Ba1‑xKxFe2As2 tapes
Ba1-xKxFe2As2 superconductors have strong potential for magnet applications through their very high upper critical field, relatively high superconducting transition temperature and manufacturability through the powder-in-tube (PIT) route. However, the critical current density in PIT tapes is still low compared to the incumbent technologies, so a greater understanding of the limiting factors is required. We have measured in-field critical currents (Ic) of stainless steel and silver double-sheathed monofilament Ba0.6K0.4Fe2As2 superconductor tapes at elevated temperatures from 15 K to 35 K. At 20 K the critical current density is up to 140 kA/cm2 in low (optimal) field and 22 kA/cm2 in 8 T. In the low-field region we observe an anomalous and sharp suppression of Ic centred at zero field. This feature is non-hysteretic for lower temperatures and perpendicular field, but becomes hysteretic for higher temperatures in perpendicular field and all temperatures in parallel field. The low-field suppression is reflected also in the n-values which can otherwise be very high, in excess of 100, in optimal field. Magnetic-field hysteresis of Ic is generally attributed to flux exclusion / flux trapping in granular superconductors and this is likely to be the case also in the present conductors. The low-field Ic anomaly also likely has its origin in the planar granularity, while magnetic phases in grains or grain boundaries may also play a role.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced mechanical strength and texture of (Ba,K)Fe2As2 Cu/Ag composite sheathed tapes with Nb barrier layer Natural width of the superconducting transition in epitaxial TiN films Kagome materials AV3Sb5 (A = K,Rb,Cs): pairing symmetry and pressure-tuning studies Stable implicit numerical algorithm of time-dependent Ginzburg–Landau theory coupled with thermal effect for vortex behaviors in hybrid superconductor systems From weak to strong-coupling superconductivity tuned by substrate in TiN films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1