将富氮化硅折射率作为最大化纳米波导中非线性混波的自由度

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2024-05-22 DOI:10.1002/adpr.202400017
Dmitrii Belogolovskii, Nikola Alic, Andrew Grieco, Yeshaiahu Fainman
{"title":"将富氮化硅折射率作为最大化纳米波导中非线性混波的自由度","authors":"Dmitrii Belogolovskii,&nbsp;Nikola Alic,&nbsp;Andrew Grieco,&nbsp;Yeshaiahu Fainman","doi":"10.1002/adpr.202400017","DOIUrl":null,"url":null,"abstract":"<p>Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide-range transparency window. It is known that a higher concentration of Si in silicon-rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade-off, four-wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma-enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C-band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous-wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two-photon absorption. Finally, the third-order susceptibility <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$\\left(\\chi\\right)_{3}$</annotation>\n </semantics></math> and the nonlinear refractive index <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$n_{2}$</annotation>\n </semantics></math> are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n <mn>3</mn>\n </msub>\n <mo>=</mo>\n <mo>(</mo>\n <mn>12.6</mn>\n <mo>±</mo>\n <mn>1.4</mn>\n <mo>)</mo>\n <mo>×</mo>\n <msup>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>19</mn>\n </mrow>\n </msup>\n <mo> </mo>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n <mo> </mo>\n <msup>\n <mi>V</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\left(\\chi\\right)_{3} = \\pm 1.4 \\left.\\right) \\times \\left(10\\right)^{- 19} \\textrm{ } \\left(\\text{m}\\right)^{2} \\textrm{ } \\left(\\text{V}\\right)^{- 2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>n</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mo>(</mo>\n <mn>7.6</mn>\n <mo>±</mo>\n <mn>0.8</mn>\n <mo>)</mo>\n <mo>×</mo>\n <msup>\n <mrow>\n <mn>10</mn>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>17</mn>\n </mrow>\n </msup>\n <mo> </mo>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n <mo> </mo>\n <msup>\n <mi>W</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$n_{2} = \\pm 0.8 \\left.\\right) \\times \\left(10\\right)^{- 17} \\textrm{ } \\left(\\text{m}\\right)^{2} \\textrm{ } \\left(\\text{W}\\right)^{- 1}$</annotation>\n </semantics></math> are estimated in a waveguide with an SRN refractive index of 3.2.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400017","citationCount":"0","resultStr":"{\"title\":\"Silicon-Rich Nitride Refractive Index as a Degree of Freedom to Maximize Nonlinear Wave Mixing in Nanowaveguides\",\"authors\":\"Dmitrii Belogolovskii,&nbsp;Nikola Alic,&nbsp;Andrew Grieco,&nbsp;Yeshaiahu Fainman\",\"doi\":\"10.1002/adpr.202400017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide-range transparency window. It is known that a higher concentration of Si in silicon-rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade-off, four-wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma-enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C-band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous-wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two-photon absorption. Finally, the third-order susceptibility <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\left(\\\\chi\\\\right)_{3}$</annotation>\\n </semantics></math> and the nonlinear refractive index <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$n_{2}$</annotation>\\n </semantics></math> are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n <mn>3</mn>\\n </msub>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>12.6</mn>\\n <mo>±</mo>\\n <mn>1.4</mn>\\n <mo>)</mo>\\n <mo>×</mo>\\n <msup>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>19</mn>\\n </mrow>\\n </msup>\\n <mo> </mo>\\n <msup>\\n <mi>m</mi>\\n <mn>2</mn>\\n </msup>\\n <mo> </mo>\\n <msup>\\n <mi>V</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\left(\\\\chi\\\\right)_{3} = \\\\pm 1.4 \\\\left.\\\\right) \\\\times \\\\left(10\\\\right)^{- 19} \\\\textrm{ } \\\\left(\\\\text{m}\\\\right)^{2} \\\\textrm{ } \\\\left(\\\\text{V}\\\\right)^{- 2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>=</mo>\\n <mo>(</mo>\\n <mn>7.6</mn>\\n <mo>±</mo>\\n <mn>0.8</mn>\\n <mo>)</mo>\\n <mo>×</mo>\\n <msup>\\n <mrow>\\n <mn>10</mn>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>17</mn>\\n </mrow>\\n </msup>\\n <mo> </mo>\\n <msup>\\n <mi>m</mi>\\n <mn>2</mn>\\n </msup>\\n <mo> </mo>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$n_{2} = \\\\pm 0.8 \\\\left.\\\\right) \\\\times \\\\left(10\\\\right)^{- 17} \\\\textrm{ } \\\\left(\\\\text{m}\\\\right)^{2} \\\\textrm{ } \\\\left(\\\\text{W}\\\\right)^{- 1}$</annotation>\\n </semantics></math> are estimated in a waveguide with an SRN refractive index of 3.2.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400017\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氮化硅具有低光学损耗、相对较高的非线性光学特性和宽范围的透明窗口,因此被广泛应用于集成光子学中的光学非线性波混合。众所周知,富硅氮化物(SRN)中硅的浓度越高,非线性响应和光学损耗(包括非线性损耗)就越大。为解决这一权衡问题,在等离子体增强化学气相沉积法制备的一百多个 SRN 波导中实现了四波混频(FWM),SRN 的折射率在 2.5 和 3.2 之间(在 C 波段测量)。结果表明,折射率约为 3 的 SRN 可最大限度地提高连续波操作的 FWM 效率,这表明 SRN 的折射率确实是非线性光学应用的一个关键优化参数。在折射率大于 2.7 的 SRN 波导中观察到的大量非线性光学损耗限制了 FWM 效率,这与双光子吸收无关。最后,我们估算了多种 SRN 折射率下的三阶易感性和非线性折射率,特别是在 SRN 折射率为 3.2 的波导中估算了大至 和 的非线性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silicon-Rich Nitride Refractive Index as a Degree of Freedom to Maximize Nonlinear Wave Mixing in Nanowaveguides

Silicon nitride is widely used in integrated photonics for optical nonlinear wave mixing due to its low optical losses combined with relatively high nonlinear optical properties and a wide-range transparency window. It is known that a higher concentration of Si in silicon-rich nitride (SRN) magnifies both the nonlinear response and optical losses, including nonlinear losses. To address the trade-off, four-wave mixing (FWM) is implemented in over a hundred SRN waveguides prepared by plasma-enhanced chemical vapor deposition in a wide range of SRN refractive indices varying between 2.5 and 3.2 (measured in the C-band). It is determined that SRN with a refractive index of about 3 maximizes the FWM efficiency for continuous-wave operation, indicating that the refractive index of SRN is indeed a crucial optimization parameter for nonlinear optics applications. The FWM efficiency is limited by large nonlinear optical losses observed in SRN waveguides with indices larger than 2.7, which are not related to two-photon absorption. Finally, the third-order susceptibility χ 3 $\left(\chi\right)_{3}$ and the nonlinear refractive index n 2 $n_{2}$ are estimated for multiple SRN refractive indices, and, specifically, the nonlinearities as large as χ 3 = ( 12.6 ± 1.4 ) × 10 19 m 2 V 2 $\left(\chi\right)_{3} = \pm 1.4 \left.\right) \times \left(10\right)^{- 19} \textrm{ } \left(\text{m}\right)^{2} \textrm{ } \left(\text{V}\right)^{- 2}$ and n 2 = ( 7.6 ± 0.8 ) × 10 17 m 2 W 1 $n_{2} = \pm 0.8 \left.\right) \times \left(10\right)^{- 17} \textrm{ } \left(\text{m}\right)^{2} \textrm{ } \left(\text{W}\right)^{- 1}$ are estimated in a waveguide with an SRN refractive index of 3.2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Masthead Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch Masthead Progress on Coherent Perovskites Emitters: From Light-Emitting Diodes under High Current Density Operation to Laser Diodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1