使用混合因子量化数据进行贝叶斯基准剂量风险评估

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2024-05-22 DOI:10.1002/env.2854
Mirjana Glisovic-Bensa, Walter W. Piegorsch, Edward J. Bedrick
{"title":"使用混合因子量化数据进行贝叶斯基准剂量风险评估","authors":"Mirjana Glisovic-Bensa,&nbsp;Walter W. Piegorsch,&nbsp;Edward J. Bedrick","doi":"10.1002/env.2854","DOIUrl":null,"url":null,"abstract":"<p>Benchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response. Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. Bayesian methods for estimation of the BMD and BMDL have grown in popularity, and a large variety of candidate dose–response models is available for applying these methods. This article applies Bayesian strategies to a mixed-factor setting with a secondary qualitative factor possessing two levels to derive two-factor Bayesian BMDs and BMDLs. We present reparameterized dose–response models that allow for explicit use of prior information on the target parameter of interest, the BMD. We also enhance our Bayesian estimation technique for BMD analysis by applying Bayesian model averaging to produce the BMDs and BMDLs, overcoming associated questions of model adequacy when multimodel uncertainty is present. An example from environmental carcinogenicity testing illustrates the calculations.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian benchmark dose risk assessment with mixed-factor quantal data\",\"authors\":\"Mirjana Glisovic-Bensa,&nbsp;Walter W. Piegorsch,&nbsp;Edward J. Bedrick\",\"doi\":\"10.1002/env.2854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Benchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response. Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. Bayesian methods for estimation of the BMD and BMDL have grown in popularity, and a large variety of candidate dose–response models is available for applying these methods. This article applies Bayesian strategies to a mixed-factor setting with a secondary qualitative factor possessing two levels to derive two-factor Bayesian BMDs and BMDLs. We present reparameterized dose–response models that allow for explicit use of prior information on the target parameter of interest, the BMD. We also enhance our Bayesian estimation technique for BMD analysis by applying Bayesian model averaging to produce the BMDs and BMDLs, overcoming associated questions of model adequacy when multimodel uncertainty is present. An example from environmental carcinogenicity testing illustrates the calculations.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 5\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2854\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2854","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

基准分析是一种通用的风险评估策略,用于确定基准剂量(BMD),过了这个剂量,出现不良环境反应的风险就会超过基准反应的固定目标值。基准剂量及其置信区间下限(BMDL)的估算,对于单一刺激的不良反应而言,已经非常清楚。然而,在许多环境中,一个或多个额外的、次要的、定性的因素可能会共同影响不利结果,从而使风险随着次要因素的不同水平而变化。用于估计 BMD 和 BMDL 的贝叶斯方法越来越受欢迎,有大量候选剂量-反应模型可用于应用这些方法。本文将贝叶斯策略应用于具有两个水平的次要定性因子的混合因子设置,以推导出双因子贝叶斯 BMD 和 BMDL。我们提出了重新参数化的剂量-反应模型,允许明确使用有关目标参数(BMD)的先验信息。我们还通过应用贝叶斯模型平均法来生成 BMD 和 BMDL,从而增强了用于 BMD 分析的贝叶斯估计技术,克服了在存在多模型不确定性时模型适当性的相关问题。以环境致癌性测试为例说明计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian benchmark dose risk assessment with mixed-factor quantal data

Benchmark analysis is a general risk estimation strategy for identifying the benchmark dose (BMD) past which the risk of exhibiting an adverse environmental response exceeds a fixed, target value of benchmark response. Estimation of BMD and of its lower confidence limit (BMDL) is well understood for the case of an adverse response to a single stimulus. In many environmental settings, however, one or more additional, secondary, qualitative factor(s) may collude to affect the adverse outcome, such that the risk changes with differential levels of the secondary factor. Bayesian methods for estimation of the BMD and BMDL have grown in popularity, and a large variety of candidate dose–response models is available for applying these methods. This article applies Bayesian strategies to a mixed-factor setting with a secondary qualitative factor possessing two levels to derive two-factor Bayesian BMDs and BMDLs. We present reparameterized dose–response models that allow for explicit use of prior information on the target parameter of interest, the BMD. We also enhance our Bayesian estimation technique for BMD analysis by applying Bayesian model averaging to produce the BMDs and BMDLs, overcoming associated questions of model adequacy when multimodel uncertainty is present. An example from environmental carcinogenicity testing illustrates the calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1